Abstract 16575: Synthetic TBX18 mRNA Induces Durable Reprogramming of Cardiac Myocytes to Pacemaker Cells

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
David W Wolfson ◽  
Nadine Zureick ◽  
Natasha Fernandez ◽  
Jared Beyersdorf ◽  
Christina Sheng ◽  
...  

Introduction: Adenoviral gene delivery of transcription factor, TBX18, has been proven to reprogram ordinary cardiomyocytes to pacemaker cells, and provide ventricular pacing in the rodent and porcine heart. Yet host innate immune response to recombinant viral therapies remains a hurdle to overcome for successful translation. Somatic cell reprogramming does not require persistent expression of the reprogramming factors after arriving at the final cell fate. We hypothesized that brief expression of synthetic TBX18 mRNA suffices to convert chamber cardiomyocytes to induced pacemaker cells, thus obviating issues inherent to adenoviral gene therapy. Methods: Synthetic mRNAs were in vitro transcribed as previously described. Neonatal rat ventricular myocytes (NRVMs) were used as an in vitro platform to test pacemaker reprogramming by TBX18 mRNA. GFP or fLuc encoded mRNA was used as controls in all experiments. Results: Three days after synthetic TBX18 mRNA transfection, Hcn4 transcript level increased >6-fold compared to control. After two weeks, genes enriched in the pacemaker tissue, e.g., Shox2, Hcn4, and Tbx3, continued to be expressed higher in TBX18-NRVMs compared to control by >4.2-fold. The level of endogenously expressed, rat Tbx18 increased by 50% in NRVMs transfected with synthetic human TBX18 mRNA, which point to long-term reprogramming. To identify and lineage-trace reprogrammed pacemaker cells in real time, we cultured ventricular cardiomyoytes from transgenic mouse line Hcn4 ( GFP/+ ) , in which de novo pacemaker cells expressing Hcn4 contain eGFP fluorescence. Twelve days after synthetic mRNA or adenoviral gene transfer of TBX18 or GFP control, a significantly higher number of Hcn4 ( GFP/+ ) cells were observed in both mRNA and adenoviral TBX18-treated wells compared to their respective controls. TBX18 mRNA-transfected NRVM monolayers exhibited >2-fold slower conduction velocities compared to fLuc-transfected myocytes. In line with slow conduction velocity in the induced pacemaker myocytes, expression of ventricular gap junction protein, Cx43, decreased significantly compared to control. Conclusions: Together, the data indicate durable nodal pacemaker cell reprogramming with transient expression of synthetic TBX18 mRNA.

1995 ◽  
Vol 130 (2) ◽  
pp. 393-405 ◽  
Author(s):  
F Strutz ◽  
H Okada ◽  
C W Lo ◽  
T Danoff ◽  
R L Carone ◽  
...  

We performed subtractive and differential hybridization for transcript comparison between murine fibroblasts and isogenic epithelium, and observed only a few novel intracellular genes which were relatively specific for fibroblasts. One such gene encodes a filament-associated, calcium-binding protein, fibroblast-specific protein 1 (FSP1). The promoter/enhancer region driving this gene is active in fibroblasts but not in epithelium, mesangial cells or embryonic endoderm. During development, FSP1 is first detected by in situ hybridization after day 8.5 as a postgastrulation event, and is associated with cells of mesenchymal origin or of fibroblastic phenotype. Polyclonal antiserum raised to recombinant FSP1 protein stained the cytoplasm of fibroblasts, but not epithelium. Only occasional cells stain with specific anti-FSP1 antibodies in normal parenchymal tissue. However, in kidneys fibrosing from persistent inflammation, many fibroblasts could be identified in interstitial sites of collagen deposition and also in tubular epithelium adjacent to the inflammatory process. This pattern of anti-FSP1 staining during tissue fibrosis suggests, as a hypothesis, that fibroblasts in some cases arise, as needed, from the local conversion of epithelium. Consistent with this notion that FSP1 may be involved in the transition from epithelium to fibroblasts are experiments in which the in vitro overexpression of FSP1 cDNA in tubular epithelium is accompanied by conversion to a mesenchymal phenotype, as characterized by a more stellate and elongated fibroblast-like appearance, a reduction in cytokeratin, and new expression of vimentin. Similarly, tubular epithelium submerged in type I collagen gels exhibited the conversion to a fibroblast phenotype which includes de novo expression of FSP1 and vimentin. Use of the FSP1 marker, therefore, should further facilitate both the in vivo studies of fibrogenesis and the mapping of cell fate among fibroblasts.


2021 ◽  
Vol 12 ◽  
Author(s):  
José Hélio Costa ◽  
Gunasekaran Mohanapriya ◽  
Revuru Bharadwaj ◽  
Carlos Noceda ◽  
Karine Leitão Lima Thiers ◽  
...  

In a perspective entitled ‘From plant survival under severe stress to anti-viral human defense’ we raised and justified the hypothesis that transcript level profiles of justified target genes established from in vitro somatic embryogenesis (SE) induction in plants as a reference compared to virus-induced profiles can identify differential virus signatures that link to harmful reprogramming. A standard profile of selected genes named ‘ReprogVirus’ was proposed for in vitro-scanning of early virus-induced reprogramming in critical primary infected cells/tissues as target trait. For data collection, the ‘ReprogVirus platform’ was initiated. This initiative aims to identify in a common effort across scientific boundaries critical virus footprints from diverse virus origins and variants as a basis for anti-viral strategy design. This approach is open for validation and extension. In the present study, we initiated validation by experimental transcriptome data available in public domain combined with advancing plant wet lab research. We compared plant-adapted transcriptomes according to ‘RegroVirus’ complemented by alternative oxidase (AOX) genes during de novo programming under SE-inducing conditions with in vitro corona virus-induced transcriptome profiles. This approach enabled identifying a major complex trait for early de novo programming during SARS-CoV-2 infection, called ‘CoV-MAC-TED’. It consists of unbalanced ROS/RNS levels, which are connected to increased aerobic fermentation that links to alpha-tubulin-based cell restructuration and progression of cell cycle. We conclude that anti-viral/anti-SARS-CoV-2 strategies need to rigorously target ‘CoV-MAC-TED’ in primary infected nose and mouth cells through prophylactic and very early therapeutic strategies. We also discuss potential strategies in the view of the beneficial role of AOX for resilient behavior in plants. Furthermore, following the general observation that ROS/RNS equilibration/redox homeostasis is of utmost importance at the very beginning of viral infection, we highlight that ‘de-stressing’ disease and social handling should be seen as essential part of anti-viral/anti-SARS-CoV-2 strategies.


2013 ◽  
Vol 1 (1) ◽  
pp. 20-31 ◽  
Author(s):  
Thu Nguyen ◽  
Adelin Gasser ◽  
Canan Nebigil

G protein-coupled receptors (GPCRs) form a large class of seven transmembrane (TM) domain receptors. The use of endogenous GPCR ligands to activate the stem cell maintenance or to direct cell differentiation would overcome many of the problems currently encountered in the use of stem cells, such as rapid in vitro differentiation and expansion or rejection in clinical applications. This review focuses on the definition of a new GPCR signaling pathway activated by peptide hormones, called “prokineticins”, in epicardium-derived cells (EPDCs). Signaling via prokineticin-2 and its receptor, PKR1, is required for cardiomyocyte survival during hypoxic stress. The binding of prokineticin-2 to PKR1 induces proliferation, migration and angiogenesis in endothelial cells. The expression of prokineticin and PKR1 increases during cardiac remodeling after myocardial infarction. Gain of function of PKR1 in the adult mouse heart revealed that cardiomyocyte-PKR1 signaling activates EPDCs in a paracrine fashion, thereby promoting de novo vasculogenesis. Transient PKR1 gene therapy after myocardial infarction in mice decreases mortality and improves heart function by promoting neovascularization, protecting cardiomyocytes and mobilizing WT1+ cells. Furthermore, PKR1 signaling promotes adult EPDC proliferation and differentiation to adopt endothelial and smooth muscle cell fate, for the induction of de novo vasculogenesis. PKR1 is expressed in the proepicardium and epicardial cells derived from mice kidneys. Loss of PKR1 causes deficits in EPDCs in the neonatal mice hearts and kidneys and impairs vascularization and heart and kidney function. Taken together, these data indicate a novel role for PKR1 in heart-kidney complex via EPDCs.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 265
Author(s):  
Katarzyna Hnatuszko-Konka ◽  
Aneta Gerszberg ◽  
Izabela Weremczuk-Jeżyna ◽  
Izabela Grzegorczyk-Karolak

The ability to restore or replace injured tissues can be undoubtedly named among the most spectacular achievements of plant organisms. One of such regeneration pathways is organogenesis, the formation of individual organs from nonmeristematic tissue sections. The process can be triggered in vitro by incubation on medium supplemented with phytohormones. Cytokinins are a class of phytohormones demonstrating pleiotropic effects and a powerful network of molecular interactions. The present study reviews existing knowledge on the possible sequence of molecular and genetic events behind de novo shoot organogenesis initiated by cytokinins. Overall, the review aims to collect reactions encompassed by cytokinin primary responses, starting from phytohormone perception by the dedicated receptors, to transcriptional reprogramming of cell fate by the last module of multistep-phosphorelays. It also includes a brief reminder of other control mechanisms, such as epigenetic reprogramming.


2021 ◽  
Author(s):  
Jose Helio Costa ◽  
Gunasekharan Mohanapriya ◽  
Bharadwaj Revuru ◽  
Carlos Noceda ◽  
Karine Leitao Lima Thiers ◽  
...  

In a perspective entitled From plant survival under severe stress to anti-viral human defense we raised and justified the hypothesis that transcript level profiles of justified target genes established from in vitro somatic embryogenesis (SE) induction in plants as a reference compared to virus-induced profiles can identify differential virus signatures that link to harmful reprogramming. A standard profile of selected genes named ReprogVirus was proposed for in vitro-scanning of early virus-induced reprogramming in critical primary infected cells/tissues as target trait. For data collection, the ReprogVirus platform was initiated. This initiative aims to identify in a common effort across scientific boundaries critical virus footprints from diverse virus origins and variants as a basis for anti-viral strategy design. This approach is open for validation and extension. In the present study, we initiated validation by experimental transcriptome data available in public domain combined with advancing plant wet lab research. We compared plant-adapted transcriptomes according to RegroVirus complemented by alternative oxidase (AOX) genes during de novo programming under SE-inducing conditions with in vitro corona virus-induced transcriptome profiles. This approach enabled identifying a major complex trait for early de novo programming during SARS-CoV-2 infection, called CoV-MAC-TED. It consists of unbalanced ROS/RNS levels, which are connected to increased aerobic fermentation that links to alpha-tubulin-based cell restructuration and progression of cell cycle. We conclude that anti-viral/anti-SARS-CoV-2 strategies need to rigorously target CoV-MAC-TED in primary infected nose and mouth cells through prophylactic and very early therapeutic strategies. We also discuss potential strategies in the view of the beneficial role of AOX for resilient behavior in plants. Furthermore, following the general observation that ROS/RNS equilibration/redox homeostasis is of utmost importance at the very beginning of viral infection, we highlight that de-stressing disease and social handling should be seen as essential part of anti-viral/anti-SARS-CoV-2 strategies.


Development ◽  
1994 ◽  
Vol 120 (8) ◽  
pp. 2091-2102 ◽  
Author(s):  
M.W. Kelley ◽  
J.K. Turner ◽  
T.A. Reh

The results of several recent studies have demonstrated that cell commitment and differentiation in the developing vertebrate retina are influenced by cell-cell interactions within the microenvironment. Retinoic acid has been shown to influence cell fates during development of the nervous system, and retinoic acid has been detected in the embryonic retina. To determine whether retinoic acid mediates the differentiation of specific neuronal phenotypes during retinal histogenesis, we treated dissociated cell cultures of embryonic and neonatal rat retina with varying concentrations of all-trans or 9-cis retinoic acid and analyzed the effects on cell fate using neuron and photoreceptor-specific antibodies. Addition of exogenous retinoic acid caused a dose-dependent, specific increase in the number of cells that developed as photoreceptors in culture throughout the period of retinal neurogenesis. In the same cultures, retinoic acid also caused a dose-dependent decrease in the number of cells that developed as amacrine cells. Also, results of double-labeled immunohistochemical studies using bromodeoxyuridine demonstrated that the primary effect of retinoic acid was to influence progenitor cells to develop as newly generated rod photoreceptors. Since retinoic acid and at least one of the retinoic acid receptors (RAR alpha) have been localized to the developing neural retina, these results suggest that retinoic acid may play a role in the normal development of photoreceptor cells in vivo.


Parasitology ◽  
1997 ◽  
Vol 115 (6) ◽  
pp. 635-640 ◽  
Author(s):  
C. G. GREVELDING ◽  
G. SOMMER ◽  
W. KUNZ

Gene expression studies in adult females of Schistosoma mansoni cultured in vitro revealed that the transcription of female-specifically expressed genes is influenced by pairing. In contrast, the activity of genes that are expressed in both genders was not affected by contact with the male. The transcription of genes was monitored in paired, separated and remated females. The transcript level of female-specifically expressed genes decreases within a few days following separation from males. Remating of uncoupled females with males leads to the reinitiation of transcription. These results provide strong evidence for the influence of the male on gene transcription in the female and contribute a molecular basis for the classical histological observation that the maturation of females is male dependent. The data also show that the culture system is suitable to monitor gene expression and, furthermore, they indicate de novo RNA synthesis in vitro.


2008 ◽  
Vol 67 (2) ◽  
pp. 115-127 ◽  
Author(s):  
James Thorne ◽  
Moray J. Campbell

Over the last 25 years roles have been established for vitamin D receptor (VDR) in influencing cell proliferation and differentiation. For example, murine knock-out approaches have revealed a role for the VDR in controlling mammary gland growth and function. These actions appear widespread, as the enzymes responsible for 1α,25-dihydroxycholecalciferol generation and degradation, and the VDR itself, are all functionally present in a wide range of epithelial and haematopoietic cell types. These findings, combined with epidemiological and functional data, support the concept that local, autocrine and paracrine VDR signalling exerts control over cell-fate decisions in multiple cell types. Furthermore, the recent identification of bile acid lithocholic acid as a VDR ligand underscores the environmental sensing role for the VDR.In vitroandin vivodissection of VDR signalling in cancers (e.g. breast, prostate and colon) supports a role for targeting the VDR in either chemoprevention or chemotherapy settings. As with other potential therapeutics, it has become clear that cancer cells displayde novoand acquired genetic and epigenetic mechanisms of resistance to these actions. Consequently, a range of experimental and clinical options are being developed to bring about more targeted actions, overcome resistance and enhance the efficacy of VDR-centred therapeutics.


2021 ◽  
Vol 118 (38) ◽  
pp. e2109475118
Author(s):  
Masaki Kinoshita ◽  
Meng Amy Li ◽  
Michael Barber ◽  
William Mansfield ◽  
Sabine Dietmann ◽  
...  

Genome remethylation is essential for mammalian development but specific reasons are unclear. Here we examined embryonic stem (ES) cell fate in the absence of de novo DNA methyltransferases. We observed that ES cells deficient for both Dnmt3a and Dnmt3b are rapidly eliminated from chimeras. On further investigation we found that in vivo and in vitro the formative pluripotency transition is derailed toward production of trophoblast. This aberrant trajectory is associated with failure to suppress activation of Ascl2. Ascl2 encodes a bHLH transcription factor expressed in the placenta. Misexpression of Ascl2 in ES cells provokes transdifferentiation to trophoblast-like cells. Conversely, Ascl2 deletion rescues formative transition of Dnmt3a/b mutants and improves contribution to chimeric epiblast. Thus, de novo DNA methylation safeguards against ectopic activation of Ascl2. However, Dnmt3a/b-deficient cells remain defective in ongoing embryogenesis. We surmise that multiple developmental transitions may be secured by DNA methylation silencing potentially disruptive genes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Birgit Arnholdt-Schmitt ◽  
Gunasekaran Mohanapriya ◽  
Revuru Bharadwaj ◽  
Carlos Noceda ◽  
Elisete Santos Macedo ◽  
...  

Reprogramming of primary virus-infected cells is the critical step that turns viral attacks harmful to humans by initiating super-spreading at cell, organism and population levels. To develop early anti-viral therapies and proactive administration, it is important to understand the very first steps of this process. Plant somatic embryogenesis (SE) is the earliest and most studied model for de novo programming upon severe stress that, in contrast to virus attacks, promotes individual cell and organism survival. We argued that transcript level profiles of target genes established from in vitro SE induction as reference compared to virus-induced profiles can identify differential virus traits that link to harmful reprogramming. To validate this hypothesis, we selected a standard set of genes named ‘ReprogVirus’. This approach was recently applied and published. It resulted in identifying ‘CoV-MAC-TED’, a complex trait that is promising to support combating SARS-CoV-2-induced cell reprogramming in primary infected nose and mouth cells. In this perspective, we aim to explain the rationale of our scientific approach. We are highlighting relevant background knowledge on SE, emphasize the role of alternative oxidase in plant reprogramming and resilience as a learning tool for designing human virus-defense strategies and, present the list of selected genes. As an outlook, we announce wider data collection in a ‘ReprogVirus Platform’ to support anti-viral strategy design through common efforts.


Sign in / Sign up

Export Citation Format

Share Document