scholarly journals Polygenic Contribution in Individuals With Early-Onset Coronary Artery Disease

Author(s):  
Sébastien Thériault ◽  
Ricky Lali ◽  
Michael Chong ◽  
James L. Velianou ◽  
Madhu K. Natarajan ◽  
...  

Background Despite evidence of high heritability, monogenic disorders are identified in a minor fraction of individuals with early-onset coronary artery disease (EOCAD). We hypothesized that some individuals with EOCAD carry a high number of common genetic risk variants, with a combined effect similar to Mendelian forms of coronary artery disease, such as familial hypercholesterolemia. Methods and Results To confirm the polygenic contribution to EOCAD (age of ≤40 years for men and ≤45 years for women), we calculated in 111 418 British participants from the UK Biobank cohort a genetic risk score (GRS) based on the presence of 182 independent variants associated with coronary artery disease (GRS182). Participants with a diagnosis of EOCAD who underwent a revascularization procedure (n=96) had a significantly higher GRS182 ( P =3.21×10 −9 ) than those without EOCAD. An increase of 1 SD in GRS182 corresponded to an odds ratio of 1.84 (1.52–2.24) for EOCAD. The prevalence of a polygenic contribution that increased EOCAD risk similar to what is observed in heterozygous familial hypercholesterolemia was estimated at 1 in 53. In a local cohort of individuals with EOCAD (n=30), GRS182 was significantly increased compared with UK Biobank controls ( P =0.001). Seven participants (23%) had a GRS182 corresponding to an estimated 2-fold increase in EOCAD risk; none had a rare mutation involved in monogenic dyslipidemia or EOCAD. Conclusions These results suggest a significant polygenic contribution in individuals presenting with EOCAD, which could be more prevalent than familial hypercholesterolemia. Determination of the polygenic risk component could be included in the diagnostic workup of patients with EOCAD.

2017 ◽  
Vol 257 ◽  
pp. 172-178 ◽  
Author(s):  
Morten K. Christiansen ◽  
Mette Nyegaard ◽  
Lisbeth N. Pedersen ◽  
Sanne B. Larsen ◽  
Morten Würtz ◽  
...  

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
J Sousa ◽  
M Mendonca ◽  
A Pereira ◽  
F Mendonca ◽  
M Neto ◽  
...  

Abstract Introduction The complex interaction between genes and environmental factors contribute to individual-level risk of coronary artery disease (CAD), often resulting in premature CAD. The role for genetic risk scores in premature CAD is still controversial. Objective To evaluate the importance of conventional risk factors and of a genetic risk score in younger and older patients with coronary artery disease Methods From a group of 1619 pts with angiographic documented CAD from the GENEMACOR study, we selected 1276 pts admitted for ACS and analysed them in 2 groups (group A: ≤50 years, n=491 pts, 87.2% male, mean age 44±4.9 and group B: >50 years, n=785 pts, 75.2% male, mean age 57±4.2). Univariate analysis was used to characterize the traits of each group and we used ROC curves and respective AUCs to evaluate the power of genetics in the prediction of CAD, through a Genetic Risk Score (GRS). Results 99.3% of the young patients had at least one modifiable risk factor, 18.4% had 2 modifiable risk factors and 75.2% had 3 or more modifiable risk factors. The pattern of risk factors contributing to CAD were different among groups: family history (A: 27.5%, B: 21.4%, p=0.015) and smoking habits (A: 64.8%, B: 42.9%, p<0.001) were more frequent among patients under 50, and traditional age-linked factors like hypertension (A: 58%, B: 75.7%, p<0.001), diabetes (A: 21.6%, B: 38.6%, p<0.001) were more common in the older group. Acute ST-elevation myocardial infarction was more frequent among the young (A: 55.4%, B: 47.4%, p=0.006), as non-ST clinical presentation was higher among elder patients. Regarding angiographic presentation, single vessel CAD was higher in group A (A: 50.3%, B: 40.9%, p<0.001), while multivessel diasease was higher in group B (A: 33.3%, B: 53.9%, p<0.001). At a mean follow-up of 5 years, older patients had a worst prognosis, registering a higher rate of cardiovascular death (A: 4.1%, B: 8.6%, p=0.002) and higher MACE (A: 26.8%, B: 31%, p=0.128),. Adding the genetic risk score (GRS), we achieved only a slight improvement in the AUC for predicting CAD (0.796->0.805, p=0.0178 and 0.748->0.761, p=0.0007 in patients under and over 50, respectively). Conclusion Coronary artery disease is not all the same, as premature CAD shares a unique and specific pattern of risk factors, clinical presentation, angiographic severity and prognosis. Genetics should not be used as an excuse to justify premature CAD, as there is frequently more than one potentially reversible risk factor present even in young patients and the additive predictive value of GRS is modest.


2017 ◽  
Vol 71 (6) ◽  
pp. e12956 ◽  
Author(s):  
Andreia Pereira ◽  
Maria Isabel Mendonca ◽  
Ana Célia Sousa ◽  
Sofia Borges ◽  
Sónia Freitas ◽  
...  

Diabetes Care ◽  
2022 ◽  
Author(s):  
Raija Lithovius ◽  
Anni A. Antikainen ◽  
Stefan Mutter ◽  
Erkka Valo ◽  
Carol Forsblom ◽  
...  

OBJECTIVE Individuals with type 1 diabetes are at a high lifetime risk of coronary artery disease (CAD), calling for early interventions. This study explores the use of a genetic risk score (GRS) for CAD risk prediction, compares it to established clinical markers, and investigates its performance according to the age and pharmacological treatment. RESEARCH DESIGN AND METHODS This study in 3,295 individuals with type 1 diabetes from the Finnish Diabetic Nephropathy Study (467 incident CAD, 14.8 years follow-up) used three risk scores: a GRS, a validated clinical score, and their combined score. Hazard ratios (HR) were calculated with Cox regression, and model performances were compared with the Harrell C-index (C-index). RESULTS A HR of 6.7 for CAD was observed between the highest and the lowest 5th percentile of the GRS (P = 1.8 × 10−6). The performance of GRS (C-index = 0.562) was similar to HbA1c (C-index = 0.563, P = 0.96 for difference), HDL (C-index = 0.571, P = 0.6), and total cholesterol (C-index = 0.594, P = 0.1). The GRS was not correlated with the clinical score (r = −0.013, P = 0.5). The combined score outperformed the clinical score (C-index = 0.813 vs. C-index = 0.820, P = 0.003). The GRS performed better in individuals below the median age (38.6 years) compared with those above (C-index = 0.637 vs. C-index = 0.546). CONCLUSIONS A GRS identified individuals at high risk of CAD and worked better in younger individuals. GRS was also an independent risk factor for CAD, with a predictive power comparable to that of HbA1c and HDL and total cholesterol, and when incorporated into a clinical model, modestly improved the predictions. The GRS promises early risk stratification in clinical practice by enhancing the prediction of CAD.


2018 ◽  
Vol 3 ◽  
pp. 114 ◽  
Author(s):  
Thomas Battram ◽  
Luke Hoskins ◽  
David A. Hughes ◽  
Johannes Kettunen ◽  
Susan M. Ring ◽  
...  

Background: Genome-wide association studies have identified genetic variants associated with coronary artery disease (CAD) in adults – the leading cause of death worldwide. It often occurs later in life, but variants may impact CAD-relevant phenotypes early and throughout the life-course. Cohorts with longitudinal and genetic data on thousands of individuals are letting us explore the antecedents of this adult disease. Methods: 149 metabolites, with a focus on the lipidome, measured using nuclear magnetic resonance (1H-NMR) spectroscopy, and genotype data were available from 5,905 individuals at ages 7, 15, and 17 years from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Linear regression was used to assess the association between the metabolites and an adult-derived genetic risk score (GRS) of CAD comprising 146 variants. Individual variant-metabolite associations were also examined. Results: The CAD-GRS associated with 118 of 149 metabolites (false discovery rate [FDR] < 0.05), the strongest associations being with low-density lipoprotein (LDL) and atherogenic non-LDL subgroups. Nine of 146 variants in the GRS associated with one or more metabolites (FDR < 0.05). Seven of these are within lipid loci: rs11591147 PCSK9, rs12149545 HERPUD1-CETP, rs17091891 LPL, rs515135 APOB, rs602633 CELSR2-PSRC1, rs651821 APOA5, rs7412 APOE-APOC1. All associated with metabolites in the LDL or atherogenic non-LDL subgroups or both including aggregate cholesterol measures. The other two variants identified were rs112635299 SERPINA1 and rs2519093 ABO. Conclusions: Genetic variants that influence CAD risk in adults are associated with large perturbations in metabolite levels in individuals as young as seven. The variants identified are mostly within lipid-related loci and the metabolites they associated with are primarily linked to lipoproteins. This knowledge could allow for preventative measures, such as increased monitoring of at-risk individuals and perhaps treatment earlier in life, to be taken years before any symptoms of the disease arise.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Michael C Honigberg ◽  
Amy Sarma ◽  
Nandita Scott ◽  
Malissa J Wood ◽  
Pradeep Natarajan

Introduction: Depression is associated with an increased risk of coronary artery disease (CAD). Whether depression modifies genetic risk of cardiovascular and cardiometabolic disease is unknown. Methods: We included genotyped, unrelated European ancestry individuals in the UK Biobank. Using genome-wide significant single nucleotide polymorphisms (SNPs) from studies external to the UK Biobank, we generated polygenic risk scores (PRS) for coronary artery disease (CAD, 74 SNPs), hypertension (75 SNPs), type 2 diabetes (T2D, 64 SNPs), atrial fibrillation (25 SNPs), and ischemic stroke (11 SNPs). Participants were stratified by PRS for each condition as low (quintile 1), intermediate (quintiles 2-4), and high (quintile 5) genetic risk. Cox models tested the association of depression frequency with each incident condition among individuals with high PRS, with adjustment for age, sex, the first 20 principal components, genotyping array, and Townsend deprivation index. Additional models further adjusted for health behaviors (exercise, tobacco and alcohol use, vegetable and fresh fruit intake) and tested associations across the PRS spectrum. Results: Among 348,083 individuals, 78,664 (22.6%) reported depression in the past 2 weeks, including 14,776 (4.2%) with depression more than half of days. Depression burden modified the risk of incident CAD across the spectrum of CAD polygenic risk (Figure 1A). Among individuals with high PRS, lack of depression was associated with lower risk of incident CAD (HR 0.70, 95% 0.58-0.86), hypertension (HR 0.58, 95% CI 0.50-0.67), T2D (HR 0.48, 95% CI 0.41-0.55), and atrial fibrillation (HR 0.74, 95% CI 0.62-0.89) compared to those with a high burden of depression. These risk reductions were minimally attenuated after further adjustment for health behaviors (Figure 1B). Conclusions: Lower burden of depression was associated was decreased risks of cardiovascular disease among individuals at high genetic cardiovascular risk.


Sign in / Sign up

Export Citation Format

Share Document