scholarly journals Prediction of Fetal Hemoglobin in Sickle Cell Anemia Using an Ensemble of Genetic Risk Prediction Models

2014 ◽  
Vol 7 (2) ◽  
pp. 110-115 ◽  
Author(s):  
Jacqueline N. Milton ◽  
Victor R. Gordeuk ◽  
James G. Taylor ◽  
Mark T. Gladwin ◽  
Martin H. Steinberg ◽  
...  
2020 ◽  
Vol 38 (12) ◽  
pp. 1312-1321
Author(s):  
Noha Sharafeldin ◽  
Joshua Richman ◽  
Alysia Bosworth ◽  
Yanjun Chen ◽  
Purnima Singh ◽  
...  

PURPOSE Using a candidate gene approach, we tested the hypothesis that individual single nucleotide polymorphisms (SNPs) and gene-level variants are associated with cognitive impairment in patients with hematologic malignancies treated with blood or marrow transplantation (BMT) and that inclusion of these SNPs improves risk prediction beyond that offered by clinical and demographic characteristics. PATIENTS AND METHODS In the discovery cohort, BMT recipients underwent a standardized battery of neuropsychological tests pre-BMT and at 6 months, 1 year, 2 years, and 3 years post-BMT. Associations between 68 candidate genes and cognitive impairment were assessed using generalized estimating equation models. Elastic-Net regression was used to build Base (sociodemographic), Clinical, and Combined (Base plus Clinical plus genetic) risk prediction models of post-BMT impairment. An independent nonoverlapping cohort from the BMT Survivor Study with self-report of learning/memory problems (as identified by their health care provider) was used for model replication. RESULTS The discovery cohort included 277 participants (58.5% males; 68.6% non-Hispanic whites; and 46.6% allogeneic BMT recipients). Adjusting for BMT type, age at BMT, sex, race/ethnicity, and cognitive reserve, SNPs in the blood-brain barrier, telomere homeostasis, and DNA repair genes were significantly associated with cognitive impairment. Compared with the Clinical Model, the Combined Model had higher predictive power in both the discovery cohort (mean area under the receiver operating characteristic curve [AUC], 0.89; 95% CI, 0.85 to 0.93 v 0.77; 95% CI, 0.71 to 0.83; P = 1.24 × 10−9) and the replication cohort (AUC, 0.71; 95% CI, 0.66 to 0.76 v 0.63; 95% CI, 0.57 to 0.68; P = .004). CONCLUSION Inclusion of candidate genetic variants enhanced the prediction of risk of post-BMT cognitive impairment beyond that offered by demographic/clinical characteristics and represents a step toward a personalized approach to managing patients at high risk for cognitive impairment after BMT.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3216-3216
Author(s):  
Jacqueline N Milton ◽  
Paola Sebastiani ◽  
Clinton T. Baldwin ◽  
Efthymia Melista ◽  
Victor R. Gordeuk ◽  
...  

Abstract Abstract 3216 Fetal hemoglobin (HbF) is the major genetic modifier of clinical course of sickle cell anemia (homozygosity for HBB glu6val). HbF level is also an important predictor of mortality. If it were possible to know at birth the HbF level likely to be present after stabilization of this measurement at about age 5 years, then an improved prognosis might be given and HbF-inducing treatments better informed. Levels of HbF in adults are highly heritable and the production of HbF is genetically regulated by several quantitative trait loci and by genetic elements linked to the HBB gene cluster. One of the most popular approaches to genetic risk prediction uses a summary of the risk alleles in the form of a genetic risk score (GRS) that is used as a covariate of the genetic prediction model. We present the development of a GRS for HbF in 841 patients from the Cooperative Study of Sickle Cell Disease (CSSCD) cohort patients and assessed its ability to predict HbF values in three independent cohorts that included PUSH (N=77), Walk-PHaSST (N=181), and C-Data from the Comprehensive Sickle Cell Centers program (N= 127). We used the results of a genome-wide association study (GWAS) of HbF in sickle cell anemia, in which patients were genotyped using the 610K Illumina array, and association of each of the ∼550K SNPs with HbF was tested using a linear regression model with gender adjusted additive genetic effects. To build the GRS, we sorted SNPs by increasing p-value, starting from the most significant SNP associated with HbF (rs766432, p-value=2.61×10−21), and pruned the list by removing SNPs in high LD (r2 > 0.8). We then used this list of SNPs to generate a sequence of nested GRS. We started with the GRS that included only the most significant SNP and generated the second GRS by adding the second SNP from the list of SNPs. The third GRS was generated by adding the 3rd SNP from the list of SNPs to the second GRS, and so on. We repeated this analysis including up to 10,000 SNPs (p-value< .02185) and hence generated 10,000 GRS, for each of the subjects in the CSSCD. Each of these GRS was included as covariate in a linear regression model and the regression coefficients of the resultant 10,000 linear regression models were estimated using Least Squares methods in the CSSCD data. The predictive value of these GRS models was then evaluated in three independent cohorts. In this evaluation, we computed the 10,000 GRS for each subjects in each data sets, and then used the 10,000 regression models estimated in the CSSCD data set to compute the expected HbF value of patients, given their GRS. We then assessed the predictive accuracy by computing the correlation between the observed and predicted values of HbF. To produce more stable predictions, we also created ensembles of predictive models. An ensemble of the first 14 GRS models including 14 SNPs had the best predictive value in all 3 data sets and explains 23.4% of the variability in HbF; the correlation between the predicted HbF and observed HbF was 0.44, 0.28 and 0.39 in the three different cohorts. Of these 14 SNPs, 6 were located in BCL11A; other SNPs were located in the olfactory receptor region and the in chromosome 11p15 and the site of the HBB gene cluster and were found previously to be associated with HbF. We next compared these results to predictive models in which we included gender, coincident alpha thalassemia, and HBB haplotypes for prediction. The model including gender and alpha thalassemia explained only 2.6% of the variability of HbF in the discovery cohort and the model including HBB haplotypes explained 2.35% of the variability of HbF in the discovery cohort and neither model showed a significant correlation between the predicted and observed HbF in the three other cohorts. In addition, combining the non-genetic information with the GRS did not help to explain more of the variability in HbF. With as few as 14 SNPs we can explain more of the variability in HbF and do a better job of prediction in comparison to using other non-genetic risk factors or genome-wide significant SNPs; however, we still cannot explain all of the variability in HbF that is due to heritability. These results suggest that knowing the genotype of a few SNPs can help to predict HbF that after they have stabilized. Prediction of HbF at an early age has the potential to help foretell some features of the severity of the clinical course of the disease and aid to optimize the clinical management of patients. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Author(s):  
Yiming Hu ◽  
Qiongshi Lu ◽  
Ryan Powles ◽  
Xinwei Yao ◽  
Fang Fang ◽  
...  

AbstractGenome wide association studies have identified numerous regions in the genome associated with hundreds of human diseases. Building accurate genetic risk prediction models from these data will have great impacts on disease prevention and treatment strategies. However, prediction accuracy remains moderate for most diseases, which is largely due to the challenges in identifying all the disease-associated variants and accurately estimating their effect sizes. We introduce AnnoPred, a principled framework that incorporates diverse functional annotation data to improve risk prediction accuracy, and demonstrate its performance on multiple human complex diseases.


2019 ◽  
Vol 29 (1) ◽  
pp. 44-56
Author(s):  
Changshuai Wei ◽  
Ming Li ◽  
Yalu Wen ◽  
Chengyin Ye ◽  
Qing Lu

Genetic association studies using high-throughput genotyping and sequencing technologies have identified a large number of genetic variants associated with complex human diseases. These findings have provided an unprecedented opportunity to identify individuals in the population at high risk for disease who carry causal genetic mutations and hold great promise for early intervention and individualized medicine. While interest is high in building risk prediction models based on recent genetic findings, it is crucial to have appropriate statistical measurements to assess the performance of a genetic risk prediction model. Predictiveness curves were recently proposed as a graphic tool for evaluating a risk prediction model on the basis of a single continuous biomarker. The curve evaluates a risk prediction model for classification performance as well as its usefulness when applied to a population. In this article, we extend the predictiveness curve to measure the collective contribution of multiple genetic variants. We further propose a nonparametric, U-statistics-based measurement, referred to as the U-Index, to quantify the performance of a multi-locus predictiveness curve. In particular, a global U-Index and a partial U-Index can be used in the general population and a subpopulation of particular clinical interest, respectively. Through simulation studies, we demonstrate that the proposed U-Index has advantages over several existing summary statistics under various disease models. We also show that the partial U-Index can have its own uniqueness when rare variants have a substantial contribution to disease risk. Finally, we use the proposed predictiveness curve and its corresponding U-Index to evaluate the performance of a genetic risk prediction model for nicotine dependence.


2021 ◽  
Author(s):  
Sarah EW Briggs ◽  
Philip Law ◽  
James E East ◽  
Sarah Wordsworth ◽  
Malcolm Dunlop ◽  
...  

Objective While population screening programs for cancer colorectal (CRC) have proven benefit, risk-stratified approaches may improve screening outcomes further. To date, genome-wide polygenic risk scores (PRS) for CRC have not been integrated with non-genetic risk factors. We aimed to evaluate several genome-wide approaches, and the benefit of adding PRS to the QCancer-10 (colorectal cancer) non-genetic risk model, to identify those at highest risk of CRC. Design Using UK Biobank we developed and compared six different PRS for CRC. The top-performing genome-wide and GWAS-significant PRS were then combined with QCancer-10 and performance compared to QCancer-10 alone. Results PRS derived using LDpred2 software performed best, with an odds-ratio per standard deviation of 1.58, and top age- and sex-adjusted C-statistic of 0.733 in logistic regression and 0.724 in Cox regression models in the Geographic Validation Cohort. Integrated QCancer-10+PRS models out-performed QCancer-10, with C-statistics of 0.730 and 0.693, and explained variation of 28.1% and 21.0% from QCancer-10+LDpred2 and QCancer-10 respectively in men; performance improvements in women were similar. Men in the top 20% of risk accounted for 47.6% of cases, and women 42.5% using QCancer-10+LDpred2 models, with a 3.49-fold increase in risk in men and 2.75-fold increase in women in the top 5% of risk, compared to average risk. Decision curve analysis showed that adding PRS to QCancer-10 improved net-benefit and interventions avoided across most probability thresholds. Conclusion Integrated QCancer-10+PRS models out-perform existing CRC risk prediction models. Evaluation of risk stratified screening using this approach in a bowel screening population could be warranted.


Sign in / Sign up

Export Citation Format

Share Document