scholarly journals Dissociation of Pentameric to Monomeric C-Reactive Protein Localizes and Aggravates Inflammation

Circulation ◽  
2014 ◽  
Vol 130 (1) ◽  
pp. 35-50 ◽  
Author(s):  
Jan R. Thiele ◽  
Jonathon Habersberger ◽  
David Braig ◽  
Yvonne Schmidt ◽  
Kurt Goerendt ◽  
...  

Background— The relevance of the dissociation of circulating pentameric C-reactive protein (pCRP) to its monomeric subunits (mCRP) is poorly understood. We investigated the role of conformational C-reactive protein changes in vivo. Methods and Results— We identified mCRP in inflamed human striated muscle, human atherosclerotic plaque, and infarcted myocardium (rat and human) and its colocalization with inflammatory cells, which suggests a general causal role of mCRP in inflammation. This was confirmed in rat intravital microscopy of lipopolysaccharide-induced cremasteric muscle inflammation. Intravenous pCRP administration significantly enhanced leukocyte rolling, adhesion, and transmigration via localized dissociation to mCRP in inflamed but not noninflamed cremaster muscle. This was confirmed in a rat model of myocardial infarction. Mechanistically, this process was dependent on exposure of lysophosphatidylcholine on activated cell membranes, which is generated after phospholipase A2 activation. These membrane changes could be visualized intravitally on endothelial cells, as could the colocalized mCRP generation. Blocking of phospholipase A2 abrogated C-reactive protein dissociation and thereby blunted the proinflammatory effects of C-reactive protein. Identifying the dissociation process as a therapeutic target, we stabilized pCRP using 1,6-bis(phosphocholine)-hexane, which prevented dissociation in vitro and in vivo and consequently inhibited the generation and proinflammatory activity of mCRP; notably, it also inhibited mCRP deposition and inflammation in rat myocardial infarction. Conclusions— These results provide in vivo evidence for a novel mechanism that localizes and aggravates inflammation via phospholipase A2–dependent dissociation of circulating pCRP to mCRP. mCRP is proposed as a pathogenic factor in atherosclerosis and myocardial infarction. Most importantly, the inhibition of pCRP dissociation represents a promising, novel anti-inflammatory therapeutic strategy.

2021 ◽  
Author(s):  
Hongyao Hu ◽  
Wei Li ◽  
Yanzhao Wei ◽  
Hui Zhao ◽  
Zhenzhong Wu ◽  
...  

Abstract Cardiac ischemia impairs angiogenesis in response to hypoxia, resulting in ventricular remodeling. Garcinoic acid (GA), the extraction from the plant garcinia kola, is validated to attenuate inflammatory response. However, the role of GA in heart failure (HF) and neovascularization after myocardial infarction (MI) is incompletely understood. The present study is striving to explore the role of GA and the potential mechanism of which in cardiac function after MI. SD rats were randomized into sham group, MI+vehicle group, and MI+GA group in vivo. Human umbilical endothelial cells (HUVECs) were cultured in vehicle or GA, and then additionally exposed to 2% hypoxia environment in vitro. MI rats displayed a dramatically reduced myocardial injury, cardiac function and vessel density in the peri-infarcted areas. GA delivery markedly improved cardiac performance and promoted angiogenesis. In addition, GA significantly enhanced tube formation in HUVECs under hypoxia condition. Furthermore, the expressions of pro-angiogenic factors HIF-1α, VEGF-A and bFGF, and pro-angiogenic proteins phospho-VEGFR2Tyr1175 and VEGFR2, as well as phosphorylation levels of Akt and eNOS were increased by GA treatment. In conclusion, GA preserved cardiac function after MI probably via promoting neovascularization. And the potential mechanism may be partially through upregulating the expressions of HIF-1α, VEGF-A, bFGF, phospho-VEGFR2Tyr1175 and VEGFR2 and activating the phosphorylations of Akt and eNOS.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Nicholas Parchim ◽  
Wei Wang ◽  
Takayuki Iriyama ◽  
Chen Liu ◽  
Athar H Siddiqui ◽  
...  

Preeclampsia (PE) is a serious pregnancy disease characterized by hypertension and proteinuria. Despite intensive research efforts, the underlying cause of PE remains a mystery. PE is, however, associated with abnormalities of the immune system. Here we report that the levels of C-reactive protein (CRP), an important acute phase reactant, were significantly elevated in the plasma of human with PE at the third trimester. Next, we found that CRP protein levels in the placentas of PE patients were also significantly increased compared to controls. In an effort to determine the exact role of elevated CRP in PE, we infused CRP into pregnant mice. We found that injection of CRP into pregnant mice induced hypertension (170 mmHg mean systolic vs. 125 mmHg mean systolic control; p<0.05) and proteinuria (25 mg/ug vs 12 mg/ug vehicle; p<0.05), indicating the direct role of CRP in PE. CRP is known to bind with phosphocholine on damaged cell membranes. Recent studies identified that neurokinin B (NKB), a placental enriched neuropeptide and known pathogenic molecule for PE, is phosphocholinated. This posttranslational modification increases its stability and enhances NKB-mediated receptor activation. These findings raise an intriguing hypothesis that CRP may bind with NKB coupled to NK3R activation and contribute to PE. To test this hypothesis, we conducted a pulldown assay, and we found that CRP bound with NKB. Next, using a cellular invasion assay, we revealed that CRP decreased invasion of human trophoblast cells (0.7 to 0.07 invasion index, p<0.05), while treatment with an NK3R selective antagonist, SB222200, ameliorated this shallow invasion. Finally, we provided in vivo evidence that inhibition of NK3R by SB222200 or knockdown of NK3R by specific siRNA in a potent nanoparticle delivery system significantly reduced CRP-induced hypertension and proteinuria in pregnant mice (170 mmHg mean systolic CRP-injected vs. 130 mmHg mean systolic siRNA NK3R; p<0.05 and proteinuria 25 mg/ug vs. 15 mg/ug; p<0.05). Overall, our findings demonstrate that elevated CRP contributes to PE and NKB/NK3R is a novel mechanism underlying CRP-mediated shallow invasion and disease development. These studies suggest novel pathogenic biomarkers and innovative therapeutic targets for PE.


2020 ◽  
Vol 39 (8) ◽  
pp. 1005-1018 ◽  
Author(s):  
I Cinar ◽  
Z Halici ◽  
B Dincer ◽  
B Sirin ◽  
E Cadirci

The presence of 5-HT7r’s in both human and rat cardiovascular and immune tissues and their contribution to inflammatory conditions prompted us to hypothesize that these receptors contribute in acute myocardial infarction (MI) with underlying chronic endothelial dysfunction. We investigated the role of 5-HT7 receptors on heart tissue that damaged by isoproterenol (ISO)-induced MI in rats with high-fat diet (HFD). In vitro and in vivo effects of 5-HT7r agonist (LP44) and antagonist (SB269970) have been investigated on the H9C2 cell line and rats, respectively. For in vivo analyses, rats were fed with HFD for 8 weeks and after this period ISO-induced MI model has been applied to rat. To investigate the role of 5-HT7r’s, two different doses of LP44 and SB269970 were evaluated and compared with standard hypolipidemic agent, atorvastatin. In vitro studies showed that LP44 has protective and proliferative effects on rat cardiomyocytes. Also in in vivo studies stimulating 5-HT7r’s by LP44 improved blood lipid profile (decreased total cholesterol, low-density lipoprotein-C, and triglyceride, increased high-density lipoprotein), decreased cardiac damage markers (creatine kinase and troponin-I), and corrected inflammatory status (tumor necrosis factor-α, interleukin-6). Our results showed significant improvement in LP44 administered rats in terms of histopathologic analyses. In damaged tissues, 5-HT7 mRNA expression increased and agonist administration decreased this elevation significantly. We determined for the first time that 5-HT7r’s are overexpressed in ISO-induced MI of rats with underlying HFD-induced endothelial dysfunction. Restoration of this overexpression by LP44, a 5-HT7r agonist, ameliorated heart tissue in physiopathologic, enzymatic, and molecular level, showing the cardiac role of these receptors and suggesting them as future potential therapeutic targets.


2019 ◽  
Vol 316 (1) ◽  
pp. L269-L279 ◽  
Author(s):  
Tianwen Lai ◽  
Mindan Wu ◽  
Chao Zhang ◽  
Luanqing Che ◽  
Feng Xu ◽  
...  

Histone deacetylase (HDAC)2 is expressed in airway epithelium and plays a pivotal role in inflammatory cells. However, the role of HDAC2 in allergic airway inflammation remains poorly understood. In the present study, we determined the role of HDAC2 in airway inflammation using in vivo models of house dust mite (HDM)-induced allergic inflammation and in vitro cultures of human bronchial epithelial (HBE) cells exposed to HDM, IL-17A, or both. We observed that HDM-challenged Hdac2+/− mice exhibited substantially enhanced infiltration of inflammatory cells. Higher levels of T helper 2 cytokines and IL-17A expression were found in lung tissues of HDM-challenged Hdac2+/− mice. Interestingly, IL-17A deletion or anti-IL-17A treatment reversed the enhanced airway inflammation induced by HDAC2 impairment. In vitro, HDM and IL-17A synergistically decreased HDAC2 expression in HBE cells. HDAC2 gene silencing further enhanced HDM- and/or IL-17A-induced inflammatory cytokines in HBE cells. HDAC2 overexpresion or blocking IL-17A gene expression restored the enhanced inflammatory cytokines. Collectively, these results support a protective role of HDAC2 in HDM-induced airway inflammation by suppressing IL-17A production and might suggest that activation of HDAC2 and/or inhibition of IL-17A production could prevent the development of allergic airway inflammation.


2008 ◽  
Vol 100 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Laia Jofre-Monseny ◽  
Patricia Huebbe ◽  
Inken Stange ◽  
Christine Boesch-Saadatmandi ◽  
Jan Frank ◽  
...  

The molecular basis of the positive association between apoE4 genotype and CVD remains unclear. There is direct in vitro evidence indicating that apoE4 is a poorer antioxidant relative to the apoE3 isoform, with some indirect in vivo evidence also available. Therefore it was hypothesised that apoE4 carriers may benefit from α-tocopherol (α-Toc) supplementation. Targeted replacement mice expressing the human apoE3 and apoE4 were fed with a diet poor (0 mg/kg diet) or rich (200 mg/kg diet) in α-Toc for 12 weeks. Neither apoE genotype nor dietary α-Toc exerted any effects on the antioxidant defence system, including glutathione, catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase activities. In addition, no differences were observed in mitogen-induced lymphocyte proliferation. α-Toc concentrations were modestly higher in plasma and lower in tissues of apoE4 compared with apoE3 mice, with the greatest differences evident in the lung, suggesting that an apoE4 genotype may reduce α-Toc delivery to tissues. A tendency towards increased plasma F2-isoprostanes in apoE4 mice was observed, while liver thiobarbituric acid-reactive substances did not differ between apoE3 and apoE4 mice. In addition, C-reactive protein (CRP) concentrations were reduced in apoE4 mice indicating that this positive effect on CRP may in part negate the increased CVD risk associated with an apoE4 genotype.


Blood ◽  
1992 ◽  
Vol 80 (1) ◽  
pp. 194-202 ◽  
Author(s):  
E Shacter ◽  
GK Arzadon ◽  
J Williams

Abstract Intraperitoneal (i.p.) injection of a mineral oil such as pristane induces a chronic inflammatory response in mice. This is characterized by a large influx of macrophages and other inflammatory cells into the peritoneal cavity for months after injection of the oil. By using the B9 cell bioassay, it was found that injection of pristane caused a marked and prolonged elevation of interleukin-6 (IL-6) levels in the peritoneal cavities of the mice. IL-6 was undetectable (less than 15 U/mL) in the peritoneal fluids of unprimed mice and during the first week after injecting pristane. From 4 to 20 weeks, the concentration of IL-6 increased to an apparent plateau with concentrations ranging from 200 to 2,000 U/mL. Increasing the dose of pristane did not substantially increase the peritoneal levels of IL-6 established at 20 weeks after pristane treatment. At later times (by day 250), the level decreased to 263 +/- 217 U/mL. However, mice that developed plasma cell tumors around day 300 showed high levels of IL-6 in the ascites fluid (650 to 2,400 U/mL). Serum levels of IL-6 were also elevated in pristane-primed mice but were substantially lower than those found in the peritoneal cavity. Chronic administration of the nonsteroidal anti- inflammatory drug indomethacin decreased the levels of IL-6 by 75% to 80%. Experiments performed in vitro showed that pristane-elicited macrophages secreted low levels of IL-6 constitutively and high levels of IL-6 in the presence of lipopolysaccharide. Both IL-6 and prostaglandin E2 production were inhibited by addition of indomethacin to macrophage cultures in vitro. Treatment of mice with pristane may provide a model system for studying the inflammatory pathways that control IL-6 levels in vivo. The relevance of these results to elucidation of the role of IL-6 in plasma cell tumorigenesis is discussed.


2000 ◽  
Vol 118 (4) ◽  
pp. A732-A733
Author(s):  
Gerardo Nardone ◽  
Eileen Holicky ◽  
Jim R. Uhl ◽  
Vittorio Colantuoni ◽  
Lina Sabatino ◽  
...  

1995 ◽  
Vol 11 (2) ◽  
pp. 187-200 ◽  
Author(s):  
Peter Vadas ◽  
Eva Stefanski ◽  
Brigitte Grouix ◽  
B.Diana Schouten ◽  
Waldemar Pruzanski

1999 ◽  
Vol 190 (12) ◽  
pp. 1733-1740 ◽  
Author(s):  
M. Griselli ◽  
J. Herbert ◽  
W.L. Hutchinson ◽  
K.M. Taylor ◽  
M. Sohail ◽  
...  

Myocardial infarction in humans provokes an acute phase response, and C-reactive protein (CRP), the classical acute phase plasma protein, is deposited together with complement within the infarct. The peak plasma CRP value is strongly associated with postinfarct morbidity and mortality. Human CRP binds to damaged cells and activates complement, but rat CRP does not activate complement. Here we show that injection of human CRP into rats after ligation of the coronary artery reproducibly enhanced infarct size by ∼40%. In vivo complement depletion, produced by cobra venom factor, completely abrogated this effect. Complement depletion also markedly reduced infarct size, even when initiated up to 2 h after coronary ligation. These observations demonstrate that human CRP and complement activation are major mediators of ischemic myocardial injury and identify them as therapeutic targets in coronary heart disease.


Sign in / Sign up

Export Citation Format

Share Document