scholarly journals Bone Morphogenetic Protein 9 Reduces Cardiac Fibrosis and Improves Cardiac Function in Heart Failure

Circulation ◽  
2018 ◽  
Vol 138 (5) ◽  
pp. 513-526 ◽  
Author(s):  
Kevin J. Morine ◽  
Xiaoying Qiao ◽  
Sam York ◽  
Peter S. Natov ◽  
Vikram Paruchuri ◽  
...  

Background: Heart failure is a growing cause of morbidity and mortality worldwide. Transforming growth factor beta (TGF-β1) promotes cardiac fibrosis, but also activates counterregulatory pathways that serve to regulate TGF-β1 activity in heart failure. Bone morphogenetic protein 9 (BMP9) is a member of the TGFβ family of cytokines and signals via the downstream effector protein Smad1. Endoglin is a TGFβ coreceptor that promotes TGF-β1 signaling via Smad3 and binds BMP9 with high affinity. We hypothesized that BMP9 limits cardiac fibrosis by activating Smad1 and attenuating Smad3, and, furthermore, that neutralizing endoglin activity promotes BMP9 activity. Methods: We examined BMP9 expression and signaling in human cardiac fibroblasts and human subjects with heart failure. We used the transverse aortic constriction–induced model of heart failure to evaluate the functional effect of BMP9 signaling on cardiac remodeling. Results: BMP9 expression is increased in the circulation and left ventricle (LV) of human subjects with heart failure and is expressed by cardiac fibroblasts. Next, we observed that BMP9 attenuates type I collagen synthesis in human cardiac fibroblasts using recombinant human BMP9 and a small interfering RNA approach. In BMP9 –/– mice subjected to transverse aortic constriction, loss of BMP9 activity promotes cardiac fibrosis, impairs LV function, and increases LV levels of phosphorylated Smad3 (pSmad3), not pSmad1. In contrast, treatment of wild-type mice subjected to transverse aortic constriction with recombinant BMP9 limits progression of cardiac fibrosis, improves LV function, enhances myocardial capillary density, and increases LV levels of pSmad1, not pSmad3 in comparison with vehicle-treated controls. Because endoglin binds BMP9 with high affinity, we explored the effect of reduced endoglin activity on BMP9 activity. Neutralizing endoglin activity in human cardiac fibroblasts or in wild-type mice subjected to transverse aortic constriction–induced heart failure limits collagen production, increases BMP9 protein levels, and increases levels of pSmad1, not pSmad3. Conclusions: Our results identify a novel functional role for BMP9 as an endogenous inhibitor of cardiac fibrosis attributable to LV pressure overload and further show that treatment with either recombinant BMP9 or disruption of endoglin activity promotes BMP9 activity and limits cardiac fibrosis in heart failure, thereby providing potentially novel therapeutic approaches for patients with heart failure.

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Md Abdur Razzaque ◽  
Xianyao Xu ◽  
Abbasali Badami ◽  
Peter Klepacz ◽  
Mei Han ◽  
...  

Remote (non-infarct) territory fibrosis is a significant cause of post-myocardial infarction (MI) heart failure (HF). We have previously shown that increased activity of β-arrestin 1 in adult human cardiac fibroblasts (CF) isolated from failing hearts is an important mechanism of cardiac fibrosis. This study investigates the potential therapeutic role of β-arrestin 1 inhibition on CF biology in vivo. Adult male rats underwent LAD ligation to induce post-MI HF. β-arrestin 1 was inhibited by intra-coronary adenoviral-mediated delivery of a β-arrestin 1 inhibitor (Ad-Barr1ct) immediately following LAD ligation (n=11). Ad-Barr1ct contains a rat β-arrestin 1 C-terminal fragment (aa. 369-418). Control rats received a null adenovirus (n=10). Animals were studied prior to and up to 8 weeks (wks) post-MI and adenoviral delivery. There was a significant decline in LV function at 8 wks post-MI in Ad-null rats vs. pre-MI. Remote territory (non-infarct area) fibrosis increased by 8 wks post-MI consistent with adverse remodeling. Intra-coronary delivery of Ad-Barr1ct following LAD ligation significantly inhibited post-MI LV dysfunction vs. Ad-Null as measured by improved fractional shortening and ejection fraction. Ad-Barr1ct also decreased peri-infarct and remote territory fibrosis. Consistent with these findings, Ad-arr1ct resulted in decreased α-SMA, collagen I, collegen III and fibronectin expression in CF isolated 8 wks post-MI vs. Ad-Null providing evidence of decreased post-MI CF activation and myofibroblast transformation with Ad-Barr1ct. Targeted inhibition of β-arrestin 1 in the heart may represent a novel therapeutic approach to prevent pathological fibrosis and maladaptive remodeling post-MI.


Author(s):  
Nicholas W. Chavkin ◽  
Soichi Sano ◽  
Ying Wang ◽  
Kosei Oshima ◽  
Hayato Ogawa ◽  
...  

Background A hallmark of heart failure is cardiac fibrosis, which results from the injury‐induced differentiation response of resident fibroblasts to myofibroblasts that deposit extracellular matrix. During myofibroblast differentiation, fibroblasts progress through polarization stages of early proinflammation, intermediate proliferation, and late maturation, but the regulators of this progression are poorly understood. Planar cell polarity receptors, receptor tyrosine kinase–like orphan receptor 1 and 2 (Ror1/2), can function to promote cell differentiation and transformation. In this study, we investigated the role of the Ror1/2 in a model of heart failure with emphasis on myofibroblast differentiation. Methods and Results The role of Ror1/2 during cardiac myofibroblast differentiation was studied in cell culture models of primary murine cardiac fibroblast activation and in knockout mouse models that underwent transverse aortic constriction surgery to induce cardiac injury by pressure overload. Expression of Ror1 and Ror2 were robustly and exclusively induced in fibroblasts in hearts after transverse aortic constriction surgery, and both were rapidly upregulated after early activation of primary murine cardiac fibroblasts in culture. Cultured fibroblasts isolated from Ror1/2 knockout mice displayed a proinflammatory phenotype indicative of impaired myofibroblast differentiation. Although the combined ablation of Ror1/2 in mice did not result in a detectable baseline phenotype, transverse aortic constriction surgery led to the death of all mice by day 6 that was associated with myocardial hyperinflammation and vascular leakage. Conclusions Together, these results show that Ror1/2 are essential for the progression of myofibroblast differentiation and for the adaptive remodeling of the heart in response to pressure overload.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xudong Zhang ◽  
Shuai Yuan ◽  
Huaping Li ◽  
Jiabing Zhan ◽  
Feng Wang ◽  
...  

AbstractMicroRNAs (miRNAs) are aberrantly expressed in the pathophysiologic process of heart failure (HF). However, the functions of a certain miRNA in different cardiac cell types during HF are scarcely reported, which might be covered by the globe effects of it on the heart. In the current study, Langendorff system was applied to isolate cardiomyocytes (CMs) and cardiac fibroblasts (CFs) from transverse aortic constriction (TAC)-induced mice. Slight increase of miR-320 expression was observed in the whole heart tissue of TAC mice. Interestingly, miR-320 was significantly elevated in CMs but decreased in CFs from TAC mice at different time points. Then, recombinant adeno-associated virus 9 with cell-type-specific promoters were used to manipulate miR-320 expressions in vivo. Both in vitro and in vivo experiments showed the miR-320 overexpression in CMs exacerbated cardiac dysfunction, whereas overexpression of miR-320 in CFs alleviated cardiac fibrosis and hypertrophy. Mechanically, downstream signaling pathway analyses revealed that miR-320 might induce various effects via targeting PLEKHM3 and IFITM1 in CMs and CFs, respectively. Moreover, miR-320 mediated effects could be abolished by PLEKHM3 re-expression in CMs or IFITM1 re-expression in CFs. Interestingly, miR-320 treated CFs were able to indirectly affect CMs function, but not vice versa. Meanwhile, upstream signaling pathway analyses showed that miR-320 expression and decay rate were rigorously manipulated by Ago2, which was regulated by a cluster of cell-type-specific TFs distinctively expressed in CMs and CFs, respectively. Together, we demonstrated that miR-320 functioned differently in various cell types of the heart during the progression of HF.


2021 ◽  
Vol 8 ◽  
Author(s):  
Haiyan Deng ◽  
Lei-Lei Ma ◽  
Fei-Juan Kong ◽  
Zengyong Qiao

The transverse aortic constriction (TAC) model surgery is a widely used disease model to study pressure overload–induced cardiac hypertrophy and heart failure in mice. The severity of adverse cardiac remodeling of the TAC model is largely dependent on the degree of constriction around the aorta, and the phenotypes of TAC are also different in different mouse strains. Few studies focus on directly comparing phenotypes of the TAC model with different degrees of constriction around the aorta, and no study compares the difference in C57BL/6N mice. In the present study, C57BL/6N mice aged 10 weeks were subjected to sham, 25G TAC, 26G TAC, and 27G TAC surgery for 4 weeks. We then analyzed the different phenotypes induced by 25G TAC, 26G TAC, and 27G TAC in c57BL/6N mice in terms of pressure gradient, cardiac hypertrophy, cardiac function, heart failure situation, survival condition, and cardiac fibrosis. All C57BL/6N mice subjected to TAC surgery developed significantly hypertrophy. Mice subjected to 27G TAC had severe cardiac dysfunction, severe cardiac fibrosis, and exhibited characteristics of heart failure at 4 weeks post-TAC. Compared with 27G TAC mice, 26G TAC mice showed a much milder response in cardiac dysfunction and cardiac fibrosis compared to 27G TAC, and a very small fraction of the 26G TAC group exhibited characteristics of heart failure. There was no obvious cardiac dysfunction, cardiac fibrosis, and characteristics of heart failure observed in 25G TAC mice. Based on our results, we conclude that the 25G TAC, 26G TAC, and 27G TAC induced distinct phenotypes in C57BL/6N mice.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Vy Tran Luu ◽  
Sang Phan ◽  
Zhuqiu Jin

Cardiac fibrosis plays an essential role in cardiac pathogenic processes that occur as a result of myocardial infarction or hypertrophic cardiomyopathy. The differentiation of cardiac fibroblasts to myofibroblasts is considered to be a critical step in the activation and progression of cardiac fibrosis. TGFβ is one of the essential molecules that promote transition of fibroblasts to myofibroblasts. Reversal of formed myofibroblasts to fibroblasts remains incompletely understood. Phorbol 12-Myristate 13-Acetate (PMA) regulates metabolism and functions of multiple cells via PKC activation mostly. To study effects of PMA on differentiation of de novo formed cardiac myofibroblasts, human cardiac fibroblasts were utilized. Human cardiac fibroblasts (HCF) cultured in fibroblast medium (FM)-2 were converted into myofibroblasts in the presence of 2 ng/mL of TGF-β1 for 48 hours. Expression of α-SMA, the biomarker of myofibroblasts, and FSP1, the biomarker of fibroblasts, was detected using Western blot and immunofluorescence. Collagen gel contraction induced by fibroblasts was determined as well. TGF-β1 increased the expression of α-SMA and reduced the expression of FSP1. Distinct cellular morphology changes in the shape and size of HCF were observed after incubation with TGF-β1 for 48 hours. To investigate effect of PMA on dedifferentiation of formed myofibroblasts, these TGF-β1-pretreated cells were divided into four groups for additional 48 hours incubation: PMA groups (10, 50, and 100 ng/mL) or DMSO (vehicle control). Both 50 and 100 ng/mL of PMA reduced the expression of α-SMA but only 100 ng/mL of PMA increased the expression of FSP1. The shape and size of cells changed after treatment with PMA. PMA also reduced TGF-β1-induced collagen gel contraction (P<0.05, compared to DMSO group). These data indicated that PMA can reverse the differentiation of de novo formed human cardiac myofibroblasts induced by TGF-β1 to fibroblasts and other unidentified type of cells. Although the mechanism of dedifferentiation remains to be identified, the novel finding of this study shed light on future development of agents to treat fibrotic diseases.


Author(s):  
Yufeng Yao ◽  
Changqing Hu ◽  
Qixue Song ◽  
Yong Li ◽  
Xingwen Da ◽  
...  

Abstract Aims Cardiac fibrosis is a major cause of heart failure (HF), and mediated by the differentiation of cardiac fibroblasts into myofibroblasts. However, limited tools are available to block cardiac fibrosis. ADAMTS16 is a member of the ADAMTS superfamily of extracellular protease enzymes involved in extracellular matrix (ECM) degradation and remodelling. In this study, we aimed to establish ADAMTS16 as a key regulator of cardiac fibrosis. Methods and results Western blot and qRT–PCR analyses demonstrated that ADAMTS16 was significantly up-regulated in mice with transverse aortic constriction (TAC) associated with left ventricular hypertrophy and HF, which was correlated with increased expression of Mmp2, Mmp9, Col1a1, and Col3a1. Overexpression of ADAMTS16 accelerated the AngII-induced activation of cardiac fibroblasts into myofibroblasts. Protein structural analysis and co-immunoprecipitation revealed that ADAMTS16 interacted with the latency-associated peptide (LAP)-transforming growth factor (TGF)-β via a RRFR motif. Overexpression of ADAMTS16 induced the activation of TGF-β in cardiac fibroblasts; however, the effects were blocked by a mutation of the RRFR motif to IIFI, knockdown of Adamts16 expression, or a TGF-β-neutralizing antibody (ΝAb). The RRFR tetrapeptide, but not control IIFI peptide, blocked the interaction between ADAMTS16 and LAP-TGF-β, and accelerated the activation of TGF-β in cardiac fibroblasts. In TAC mice, the RRFR tetrapeptide aggravated cardiac fibrosis and hypertrophy by up-regulation of ECM proteins, activation of TGF-β, and increased SMAD2/SMAD3 signalling, however, the effects were blocked by TGF-β-NAb. Conclusion ADAMTS16 promotes cardiac fibrosis, cardiac hypertrophy, and HF by facilitating cardiac fibroblasts activation via interacting with and activating LAP-TGF-β signalling. The RRFR motif of ADAMTS16 disrupts the interaction between ADAMTS16 and LAP-TGF-β, activates TGF-β, and aggravated cardiac fibrosis and hypertrophy. This study identifies a novel regulator of TGF-β signalling and cardiac fibrosis, and provides a new target for the development of therapeutic treatment of cardiac fibrosis and HF.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Ruizhu Lin ◽  
Lea Rahtu-Korpela ◽  
Johanna Magga ◽  
Lasse Pakanen ◽  
Katja Porvari ◽  
...  

Background: Accumulation of extracellular matrix disturbs the electrical conduction and stiffens myocardium, leading to higher risk for arrhythmias and diastolic dysfunction. MicroRNAs (miRNAs) function in post-translational gene regulation, and aberrant alteration of miRNAs level has been implicated in cardiac pathologies. Methods and Results: RNA sequencing of RNA samples of sudden cardiac death (SCD) victims with idiopathic myocardial fibrosis (IMF) for differentially expressed miRNAs identified miR-1468-3p. qPCR analysis validated that expression of miR-1468-3p is upregulated in hearts of SCD victims with IMF comparing to control subjects. However, the role and molecular function of miR-1468-3p in cardiac fibrosis are not known. We utilized human cardiac fibroblasts (hCFs) and gain- and loss-of-function approaches to study the role of miR-1468-3p in modulating fibroblast function. Overexpressing miR-1468-3p in hCFs resulted in an increase in expression of several fibrotic genes compared with hCFs transfected with control mir-mimic. Western blot analysis showed that miR-1468-3p mimic was sufficient to drive expression of collagen I and CTGF protein expression. Treatment of hCFs with miR-1468-3p antagomir did not alter expression of fibrosis-related gene at basal level, whereas miR-1468-3p inhibition significantly attenuated TGF-β1-induced collagen I and collagen III expression. Treatment of hCFs with miR-1468-3p antagomir blunted TGF-β1-induced collagen I and CTGF protein expression, but not TGF-β1-induced αSMA expression. Employing Sirius Red/Fast Green assay, we validated that depletion of miR-1468-3p antagonized both TGF-β1-triggered collagen and non-collagen protein production. Finally, we found that miR-1468-3p antagomir downregulated TGF-β1-induced collagen expression partially through the interference of TGF-β1/MAPK signals (p38 and JNK) and Integrin signaling. Conclusions: Our data indicate a pro-fibrotic role of miR-1468-3p in modulating cardiac fibrosis, and manipulating the expression of miR-1468-3p may provide a therapeutic strategy for treatment of cardiac fibrosis.


2020 ◽  
Vol 126 (8) ◽  
pp. 1007-1023 ◽  
Author(s):  
Shiju Ye ◽  
Wu Luo ◽  
Zia A. Khan ◽  
Gaojun Wu ◽  
Lina Xuan ◽  
...  

Rationale: Excessive Ang II (angiotensin II) levels lead to a profibrotic and hypertrophic milieu that produces deleterious remodeling and dysfunction in hypertension-associated heart failure. Agents that disrupt Ang II–induced cardiac dysfunction may have clinical utility in the treatment of hypertension-associated heart failure. Objective: We have examined the potential effect of celastrol—a bioactive compound derived from the Celastraceae family—on Ang II–induced cardiac dysfunction. Methods and Results: In rat primary cardiomyocytes and H9C2 (rat cardiomyocyte-like H9C2) cells, celastrol attenuates Ang II–induced cellular hypertrophy and fibrotic responses. Proteome microarrays, surface plasmon resonance, competitive binding assays, and molecular simulation were used to identify the molecular target of celastrol. Our data showed that celastrol directly binds to and inhibits STAT (signal transducer and activator of transcription)-3 phosphorylation and nuclear translocation. Functional tests demonstrated that the protection of celastrol is afforded through targeting STAT3. Overexpression of STAT3 dampens the effect of celastrol by partially rescuing STAT3 activity. Finally, we investigated the in vivo effect of celastrol treatment in mice challenged with Ang II and in the transverse aortic constriction model. We show that celastrol administration protected heart function in Ang II–challenged and transverse aortic constriction–challenged mice by inhibiting cardiac fibrosis and hypertrophy. Conclusions: Our studies show that celastrol inhibits Ang II–induced cardiac dysfunction by inhibiting STAT3 activity.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Junteng Zhou ◽  
Geer Tian ◽  
Yue Quan ◽  
Junli Li ◽  
Xiaojiao Wang ◽  
...  

P2X7 purinergic receptor (P2X7R) has been implicated in several cardiovascular diseases. However, whether it regulates cardiac fibrosis remains elusive. Herein, its involvement in the development of cardiac fibrosis was examined using a transverse aortic constriction (TAC) mice model and cardiac fibroblasts (CFs) hyperstimulated by TGF-β1 for 48 hours. Results showed that TAC and TGF-β1 treatment increased the expression of P2X7R. Silencing of P2X7R expression with siP2X7R ameliorated TGF-β1 effects on fibroblasts activation. Similarly, P2X7R inhibition by Brilliant Blue G (BBG) reduced mRNA and protein levels of profibrosis markers, while the P2X7R agonist BzATP accelerated the TGF-β1-induced CFs activation. Moreover, it was found that TGF-β1-induced CFs activation was mediated by the NLRP3/IL-1β inflammasome pathway. BBG or siP2X7R treatment suppressed NLRP3/IL-1β pathway signaling. In vivo, BBG significantly alleviated TAC-induced cardiac fibrosis, cardiac dysfunction, and NLRP3/IL-1β activation. Collectively, our findings imply that suppressing P2X7R may limit cardiac fibrosis and abnormal activation of CFs.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Yan Zou ◽  
Le Pan ◽  
Yi Shen ◽  
Xiang Wang ◽  
Chenxing Huang ◽  
...  

AbstractProgressive cardiac fibrosis accelerates the development of heart failure. Here, we aimed to explore serum Wnt5a and Wnt11 levels in hypertension patients, the roles of Wnt5a and Wnt11 in cardiac fibrosis and potential mechanisms under pressure overload. The pressure overload mouse model was built by transverse aortic constriction (TAC). Cardiac fibrosis was analyzed by Masson’s staining. Serum Wnt5a or Wnt11 was elevated and associated with diastolic dysfunction in hypertension patients. TAC enhanced the expression and secretion of Wnt5a or Wnt11 from cardiomyocytes (CMs), cardiac fibroblasts (CFs), and cardiac microvascular endothelial cells (CMECs). Knockdown of Wnt5a and Wnt11 greatly improved cardiac fibrosis and function at 4 weeks after TAC. In vitro, shWnt5a or shWnt11 lentivirus transfection inhibited pro-fibrotic effects in CFs under mechanical stretch (MS). Similarly, conditional medium from stretched-CMs transfected with shWnt5a or shWnt11 lentivirus significantly suppressed the pro-fibrotic effects induced by conditional medium from stretched-CMs. These data suggested that CMs- or CFs-derived Wnt5a or Wnt11 showed a pro-fibrotic effect under pressure overload. In vitro, exogenous Wnt5a or Wnt11 activated ERK and p38 (fibrotic-related signaling) pathway, promoted the phosphorylation of EGFR, and increased the expression of Frizzled 5 (FZD5) in CFs. Inhibition or knockdown of EGFR greatly attenuated the increased FZD5, p-p38, and p-ERK levels, and the pro-fibrotic effect induced by Wnt5a or Wnt11 in CFs. Si-FZD5 transfection suppressed the increased p-EGFR level, and the fibrotic-related effects in CFs treated with Wnt5a or Wnt11. In conclusion, pressure overload enhances the secretion of Wnt5a or Wnt11 from CMs and CFs which promotes cardiac fibrosis by activation the crosstalk of FZD5 and EGFR. Thus, Wnt5a or Wnt11 may be a novel therapeutic target for the prevention of cardiac fibrosis under pressure overload.


Sign in / Sign up

Export Citation Format

Share Document