Abstract 058: Transforming Growth Factor β1 Antagonizes Npr1 Expression and Vascular Signaling: Role of Transcription Factor δEF1 Transforming Growth Factor β1 Antagonizes Npr1 Expression and Vascular Signaling: Role of Transcription Factor δEF1

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Anagha Sen ◽  
Prerna Kumar ◽  
Sarah H Lindsey ◽  
Prasad V Katakam ◽  
Meaghan Bloodworth ◽  
...  

The objective of the present study was to examine the repressive effect of transforming growth factor beta 1 (TGF-β1) in the regulation of Npr1 (coding for guanylyl cyclase/natriuretic peptide receptor-A; GC-A/NPRA) gene expression and vascular signaling. The rat thoracic aortic vascular smooth muscle cells (RTASMC) and denuded aortic rings were cultured in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum and treated with TGF-β1 in a time-and dose-dependent manner. Treatment with TGF-β1 decreased NPRA mRNA and protein levels by 62% (0.42 ± 0.05 vs. control, 0.9 ± 0.02, p < 0.01) and 55% (9603 ± 860 vs. control, 22211 ± 1449, p < 0.01), respectively. TGF-β1 treatment significantly increased delta EF1 (δEF1) protein expression by 2.4-fold (907.9 ± 36.5. vs. control, 378.5 ± 10.3; p < 0.001) and enhanced its recruitment to Npr1 promoter. TGF-β1-treated RTASMCs and denuded aortic rings showed significant increases in α-smooth muscle actin (α-SMA) and collagen type 1 alpha 2 (COL1A2) protein expression, which were markedly attenuated by ANP treatments. The TGF-β1-pretreated cells showed 2.6-fold increase in α-SMA (control, 1523 ± 143, TGF-β1, 3997 ± 182 and TGF-β1 + ANP, 2172 ± 135) and 3.4-fold increase in COL1A2 (control, 1250 ± 77, TGF-β1, 4234 ± 110 and TGF-β1 + ANP, 1546 ± 57), respectively. In ex vivo experiments of denuded-aortic rings, TGF-β1 decreased Npr1 mRNA and protein levels by 62% (0.39 ± 0.06 vs. control 1.10 ± 0.01) and 70% (2609 ± 69 vs. control 5775 ± 123), respectively, and significantly (p < 0.0) increased the expression of TGF-β1-responsive proteins, namely α-SMA (2.6-fold) and COL1A2 (3.1-fold). Treatment with increasing concentrations of ANP (IC50=6x10 -9 M), relaxed denuded aortic rings contracted with prostaglandin F2α (PGF2α); however, pretreatment with TGF-β1 significantly attenuated ANP-mediated vascular relaxation after PFG2α contraction (ANP-treated, 68.68 ± 9.4 vs. TGF-β1 + ANP-treated 88.85 ± 4.7). The endothelium-intact vessels were not affected by TGF-β1 incubation. Together, the present results suggest that an antagonistic cascade exists between TGF-β1 pathways and ANP/NPRA signaling, which might be critical in the vascular remodeling and regulation of hypertension and cardiovascular homeostasis.

2005 ◽  
Vol 288 (2) ◽  
pp. C435-C442 ◽  
Author(s):  
XiuXia Zhou ◽  
John B. Trudeau ◽  
Kathryn J. Schoonover ◽  
Jessica I. Lundin ◽  
Steve M. Barnes ◽  
...  

Tissue inhibitor of metalloproteinase (TIMP)-1 is a potent inhibitor of activated matrix metalloproteinases (MMPs) such as gelatinases and collagenases. TIMP-1 is induced by transforming growth factor-β1 (TGF-β1), but details regarding signaling pathways remain unclear. T-helper-2 cytokines also have profibrotic properties and can interact with TGF-β. In the present study, we examined the effects of interleukin (IL)-13 (2,500 pM) on TGF-β1 (200 pM)-induced expression of TIMP-1 mRNA and protein in primary human airway fibroblasts obtained from 57 human subjects. IL-13 alone had no effect on TIMP-1 mRNA or protein expression. However, IL-13 synergistically augmented TGF-β1-induced TIMP-1 mRNA and protein expression ( P < 0.001 vs. TGF-β1 alone). The upregulation of TIMP-1 by the combination of TGF-β1 and IL-13 involved increased transcription, with little effect on mRNA stabilization. Initial exploration of the pathways leading to the synergy determined that activation of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway by IL-13 may have a negative effect on TIMP-1 production. The specific PI3K inhibitor LY-294002 in the presence of TGF-β1, IL-13, or the combination of the two caused significant increases in TIMP-1 mRNA expression, while LY-294002 increased TIMP-1 protein levels in the presence of IL-13 alone. These results suggest that IL-13 augments TGF-β1-induced profibrotic responses at both the mRNA and protein levels. Although IL-13 induced activation of PI3K-Akt, the activation did not contribute to the synergy observed with TGF-β1 plus IL-13 in TIMP-1 expression and in fact may dampen it. The mechanisms behind the synergy remain to be determined.


2000 ◽  
Vol 11 (8) ◽  
pp. 1398-1408
Author(s):  
STEFAN LANG ◽  
ANDREA HARTNER ◽  
R. BERND STERZEL ◽  
HARALD O. SCHÖCKLMANN

Abstract. Hyperplasia of mesangial cells (MC) is a frequent finding in glomerulonephritis. The control and function of cyclin D1, a regulator of cell cycle progression, in MC proliferation in vivo and in vitro were investigated. In a rat model of mesangioproliferative glomerulonephritis, increases in the number of cyclin D1-positive MC nuclei were prominent on day 5 of the disease, preceding the peak of MC hyperplasia. In growth-arrested rat MC in culture, mitogenic stimulation with serum or platelet-derived growth factor (PDGF) led to rapid increases in cyclin D1 protein expression. Transforming growth factor-β1 inhibited PDGF induction of cyclin D1 protein at 12 h. In an examination of the subcellular distribution of cyclin D1, it was observed that stimulation of MC with PDGF for 6 h caused translocation of cyclin D1 from the cytoplasm into the nucleus. Coincubation with PDGF and transforming growth factor-β1 completely inhibited this effect, without altering the cellular cyclin D1 protein abundance at that time point. To test whether reduction of cyclin D1 protein levels was sufficient to inhibit mitogenesis, MC were transfected with antisense oligonucleotides (ODN) complementary to rat cyclin D1 mRNA. Antisense ODN against cyclin D1 reduced the serum- or PDGF-induced protein expression of cyclin D1 to 27 or 10% of control levels, respectively. These inhibitory effects were correlated with diminished cyclin-dependent kinase 4 activity. Antisense ODN against cyclin D1 also decreased the PDGF-induced increase in p21Waf-1 protein levels. The MC proliferation caused by serum or PDGF was markedly inhibited by antisense ODN against cyclin D1, as measured by [3H]thymidine uptake and cell counts. It is concluded that increased cyclin D1 protein expression of MC is required for MC proliferation. Targeting cyclin D1 expression may represent an effective means to inhibit MC proliferation in vitro and in vivo.


2005 ◽  
Vol 11 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Noboru Yoshimoto ◽  
Shinji Togo ◽  
Toru Kubota ◽  
Nobuyuki Kamimukai ◽  
Shuji Saito ◽  
...  

2020 ◽  
Vol 48 (6) ◽  
pp. 030006052092635
Author(s):  
Guo-wei Wei ◽  
Ke-yue Li ◽  
Ke-li Tang ◽  
Cheng-Xian Shi

Objective To investigate the effects of tanshinone IIA on the transforming growth factor-β1 (TGF-β1)/Smads signaling pathway in angiotensin II-treated hepatic stellate cells (HSCs). Methods HSCs were cultured and treated with angiotensin II (10 μM) or angiotensin II (10 μM) plus tanshinone IIA (3, 10, or 30 μM). Cells were incubated for 48 hours and proliferation was determined with the Cell Counting Kit-8. The relative mRNA expression of TGF-β1, Smad4, and Smad7 was measured by quantitative real-time PCR, and the relative protein expression levels were investigated by western blotting. Results After angiotensin II treatment, cell proliferation was significantly accelerated. Furthermore, both the mRNA and protein expression of TGF-β1 and Smad4 was significantly up-regulated, while the mRNA and protein expression of Smad7 was significantly down-regulated compared with the control cells. Tanshinone IIA inhibited the observed effects of angiotensin II in a concentration-dependent manner, with significant inhibition exerted by tanshinone IIA at 10 and 30 μM. Conclusions Angiotensin II promotes the proliferation of HSCs, possibly by regulating the expression of components along the TGF-β1/Smads signaling pathway. Tanshinone IIA inhibits the angiotensin II-induced activation of this pathway, and may, therefore, have preventive and therapeutic effects in liver fibrosis.


2005 ◽  
Vol 54 (9) ◽  
pp. 837-847 ◽  
Author(s):  
V. S. Thakur ◽  
B. Shankar ◽  
S. Chatterjee ◽  
S. Premachandran ◽  
K. B. Sainis

2000 ◽  
Vol 350 (1) ◽  
pp. 291-298 ◽  
Author(s):  
David J. GRAINGER ◽  
Emma K. FROW

The cytokine transforming growth factor β1 (TGF-β1) is secreted in a latent form that has no known biological activity. The conversion of latent TGF-β1 into its biologically active 25kDa form is thought to be an important step in the regulation of TGF-β activity both in cell culture and in vivo. Thrombospondin (TSP)-1, a 360kDa platelet α-granule and extracellular matrix protein, has been shown to participate in TGF-β1 activation. We have used a chemically defined system to examine the mechanism of TSP-1-mediated TGF-β1 activation. However, the addition of two different preparations of TSP-1 to recombinant small latent TGF-β1 in the test tube resulted in only a very small increase in the proportion of the TGF-β1 able to bind to the TGF-β type II receptor: from 0.1% to a maximum of 0.4%. This small effect was not specific for TSP-1: matrix metalloproteinase 2, tissue inhibitor of matrix metalloproteinase 2 and active plasminogen activator inhibitor 1, but not transglutaminase, human serum albumin or immunoglobulin, had quantitatively similar effects on latent TGF-β1. Furthermore, no change in the activity associated with small latent TGF-β1 was noted in either mink lung epithelial cell or rat aortic smooth-muscle cell culture systems in the presence of TSP-1 (or TSP-1-derived peptides). We conclude that TSP-1, either alone or in the presence of cultured smooth-muscle cells (a cell type known to activate latent TGF-β in vitro and in vivo) is unable to activate latent TGF-β1. Any TSP-mediated activation of TGF-β1 must depend on additional factor(s) not present in our systems.


Sign in / Sign up

Export Citation Format

Share Document