Abstract P338: Long Term End Organ Inflammation and Dysfunction in Mice After Angiotensin II Induced Hypertension

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Wei Chen ◽  
Liang Xiao ◽  
David G Harrison

Hypertension is associated with vascular and renal inflammation leading to organ dysfunction and injury. Although reduction of hypertensive stimuli or antihypertensive therapy can lower blood pressure, it is unclear if inflammation persists beyond the initial hypertensive stimulus. We sought to examine the hypothesis that a short-term hypertensive insult leads to ongoing inflammation and end organ dysfunction. C57BL/6 mice received a subcutaneous infusion of angiotensin II (490 ng/kg/min) or a sham infusion via osmotic minipumps for two weeks. The minipumps were then removed, and the mice were allowed to recover for two months. To evaluate renal function, mice received a challenge of normal saline equal to 10% of each body weight via intraperitoneal injection and the urine excreted in the subsequent 4 hours was measured. Whereas sham-treated mice excreted 88±7%, mice that had received ang II 2 months earlier excreted only 51±9% of the injected volume (p<0.05). Moreover, albuminuria was doubled in the mice that had received prior ang II infusion (0.55 ± 0.1 vs 0.26 ± 0.1 μg/ml, p < 0.05). After sacrifice, the renal and aortic samples of both groups of mice were analyzed by flow cytometry. We found that the numbers of total leukocytes (CD45 + ), total T lymphocytes (CD3 + ) and monocytes/macrophages (F4/80 + ) were 4 to 5 times higher in aortas and 45 to 70% higher in the kidneys even after two months following ang II infusion compared to sham-treated mice. We have previously shown that isolevuglandin-protein adducts in antigen presenting cells are immunogenic, and we found that these were persistently in MerTK + /CD64 + macrophages in the aorta mice that had received ang II 2 months earlier. There was also striking perivascular fibrosis in mice that had received prior ang II, but not in sham infused mice. These data indicate that a persistent inflammatory process, accompanied with renal dysfunction and aortic fibrosis continues for a prolonged period of hypertension. Efforts to ameliorate this might reduce the long-term risk renal and vascular disease.

1990 ◽  
Vol 259 (5) ◽  
pp. R1012-R1016 ◽  
Author(s):  
K. Ando ◽  
Y. Sato ◽  
T. Fujita

We examined the salt sensitivity of blood pressure in angiotensin II (ANG II)-induced hypertension. Wistar rats, salt loaded (0.66, 2, or 8% salt-containing diet) for 4 or 12 days, were infused intravenously with 15 or 60 ng/min of ANG II. Systolic blood pressure (SBP) was not increased by long-term (12 days) salt loading, and SBP was unchanged with ANG II and normal-salt (0.66%) diet. However, when combined with salt loading, ANG II produced hypertension in a dose-dependent fashion; compared with control (120 +/- 2 mmHg), SBP was increased with 15 ng/min of ANG II and 8% salt diet (145 +/- 5 mmHg, P less than 0.05) and with 60 ng/min of ANG II and either 2 or 8% salt diet (149 +/- 8 and 174 +/- 8 mmHg, P less than 0.05, respectively). Na space (exchangeable Na) was increased in a roughly similar pattern and correlated significantly (r = 0.531, P less than 0.05) with SBP. However, with 15 ng/min of ANG II, Na space was not different among rats on either level of salt loading, although the 8% salt diet elevated SBP. Data obtained with short-term (4 days) treatment indicate that an elevated Na space preceded development of hypertension. With 15 ng/min of ANG II and 8% salt diet for 4 days, Na space was markedly (P less than 0.05) increased, but SBP was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 258 (5) ◽  
pp. H1427-H1431 ◽  
Author(s):  
J. P. Granger ◽  
E. H. Blaine ◽  
D. L. Stacy ◽  
M. J. La Rock

In vitro studies have suggested that atrial natriuretic peptide (ANP) is a potent antagonist of the vasoconstrictor actions of angiotensin II (ANG II). The purpose of this study was to determine the long-term effects of physiological increases in circulating levels of ANP on arterial pressure (AP) regulation in conscious dogs (n = 9) with ANG II-induced hypertension. Infusion of ANG II at a rate of 10 ng.kg-1.min-1 for 7 days increased AP from 85 +/- 3 to 133 +/- 4 mmHg. This increase in AP was associated with an increase in total peripheral resistance (TPR) and a decrease in cardiac output (CO). After 7 days of ANG II infusion, ANP103-126 was then infused simultaneously at a rate of 20 ng.kg-1.min-1 for 7 days. Plasma levels of ANP increased from 59 +/- 15 to 285 +/- 28 pg/ml. Increasing plasma ANP levels for 7 days had no significant long-term effect on AP (133 +/- 4 vs. 125 +/- 6 mmHg), TPR, or CO. There were also no significant changes in glomerular filtration rate or sodium excretion during the 7 days of ANP infusion. These data indicate that long-term increases in circulating levels of ANP have minimal chronic hypotensive effects in dogs with ANG II hypertension. In addition, the results from this study suggest that physiological increases in plasma ANP do not exhibit long-term antagonistic effects toward the vasoconstrictor actions of ANG II.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Daniel J Fehrenbach ◽  
Meena S Madhur

Hypertension, or an elevated blood pressure, is the primary modifiable risk factor for cardiovascular disease, the number one cause of mortality worldwide. We previously demonstrated that Th17 activation and interleukin 17A (IL-17A)/IL-21 production is integral for the full development of a hypertensive phenotype as well as the renal and vascular damage associated with hypertension. Rho-associated coiled-coil containing protein Kinase 2 (ROCK2) serves as a molecular switch upregulating Th17 and inhibiting regulatory T cell (Treg) differentiation. We hypothesize that hypertension is characterized by excessive T cell ROCK2 activation leading to increased Th17/Treg ratios and ultimately end-organ damage. We first showed in vitro that KD025, an experimental orally bioavailable ROCK2 inhibitor inhibits Th17 cell proliferation and IL-17A/IL-21 production. To determine if hypertensive stimuli such as endothelial stretch increases T cell ROCK2 expression, we cultured human aortic endothelial cells exposed to 5% (normotensive) or 10% (hypertensive) stretch with circulating human T cells and HLA-DR+ antigen presenting cells. Hypertensive stretch increased T cell ROCK2 expression 2-fold. We then tested the effect of ROCK2 inhibition with KD025 (50mg/kg i.p. daily) in vivo on angiotensin II (Ang II)-induced hypertension. Treatment with KD025 significantly attenuated the hypertensive response within 1 week of Ang II treatment (systolic blood pressure: 139± 8 vs 108±7mmHg) and this persisted for the duration of the 4 week study reaching blood pressures 20 mmHg lower (135±13mmHg) than vehicle treated mice (158±4mmHg p<0.05 effect of treatment 2-way Repeated Measures ANOVA). Flow cytometric analysis of tissue infiltrating leukocytes revealed that KD025 treatment increased Treg/Th17 ratios in the kidney (0.61±0.03 vs 0.79±0.08, p<0.05 student’s t-test). Thus, T cell ROCK2 may be a novel therapeutic target for the treatment of hypertension.


2016 ◽  
Vol 311 (6) ◽  
pp. F1260-F1266 ◽  
Author(s):  
Xuming Sun ◽  
Ellen Tommasi ◽  
Doris Molina ◽  
Renu Sah ◽  
K. Bridget Brosnihan ◽  
...  

Diets rich in grains and meat and low in fruits and vegetables (acid-producing diets) associate with incident hypertension, whereas vegetarian diets associate with lower blood pressure (BP). However, the pathways that sense and mediate the effects of acid-producing diets on BP are unknown. Here, we examined the impact of the deletion of an acid sensor GPR4 on BP. GPR4 is a proton-sensing G protein-coupled receptor and an acid sensor in brain, kidney, and blood vessels. We found that GPR4 mRNA was higher in subfornical organ (SFO) than other brain regions. GPR4 protein was abundant in SFO and present in capillaries throughout the brain. Since SFO partakes in BP regulation through the renin-angiotensin system (RAS), we measured BP in GPR4−/− and GPR4+/+ mice and found that GPR4 deletion associated with lower systolic BP: 87 ± 1 mmHg in GPR4−/− ( n = 35) vs. 99 ± 2 mmHg ( n = 29) in GPR4+/+; P < 0.0001, irrespective of age and sex. Angiotensin II receptors detected by 125I-Sarthran binding were lower in GPR4−/− than GPR4+/+ mice in SFO and in paraventricular nucleus of hypothalamus. Circulating angiotensin peptides were comparable in GPR4−/− and GPR4+/+ mice, as were water intake and excretion, serum and urine osmolality, and fractional excretion of sodium, potassium, or chloride. A mild metabolic acidosis present in GPR4−/− mice did not associate with elevated BP, implying that deficiency of GPR4 may preclude the effect of chronic acidosis on BP. Collectively, these results posit the acid sensor GPR4 as a novel component of central BP control through interactions with the RAS.


Author(s):  
Xiao Chun Li ◽  
Ana Paula Oliveira Leite ◽  
Xiaowen Zheng ◽  
Chunling Zhao ◽  
Xu Chen ◽  
...  

The present study used a novel mouse model with proximal tubule-specific knockout of AT 1a receptors in the kidney, PT- Agtr1a −/− , to test the hypothesis that intratubular Ang II (angiotensin II) and AT 1a receptors in the proximal tubules are required for maintaining normal blood pressure and the development of Ang II–induced hypertension. Twenty-six groups (n=6–15 per group) of adult male wild-type, global Agtr1a −/− , and PT- Agtr1a −/− mice were infused with Ang II (1.5 mg/kg per day, IP), or overexpressed an intracellular Ang II fusion protein in the proximal tubules for 2 weeks. Basal telemetry blood pressure were ≈15±3 mm Hg lower in PT- Agtr1a −/− than wild-type mice and ≈13±3 mm Hg higher than Agtr1a −/− mice ( P <0.01). Basal glomerular filtration was ≈23.9% higher ( P <0.01), whereas fractional proximal tubule Na + reabsorption was lower in PT- Agtr1a −/− mice ( P <0.01). Deletion of AT 1a receptors in the proximal tubules augmented the pressure-natriuresis response ( P <0.01) and natriuretic responses to salt loading or Ang III infusion ( P <0.01). Ang II induced hypertension in wild-type, PT- Agtr1a −/− and PT- Nhe3 −/− mice, but the pressor response was ≈16±2 mm Hg lower in PT- Agtr1a −/− and PT- Nhe3 −/− mice ( P <0.01). Deletion of AT 1a receptors or NHE3 (Na + /H + exchanger 3) in the proximal tubules attenuated ≈50% of Ang II–induced hypertension in wild-type mice ( P <0.01), but blocked intracellular Ang II fusion protein-induced hypertension in PT- Agtr1a −/− mice ( P <0.01). Taken together, the results of the present study provide new insights into the critical role of intratubular Ang II/AT 1 (AT 1a )/NHE3 pathways in the proximal tubules in normal blood pressure control and the development of Ang II–induced hypertension.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Shetal H Padia ◽  
Nancy L Howell ◽  
Brandon A Kemp ◽  
John J Gildea ◽  
Susanna R Keller ◽  
...  

A major proposed mechanism for the initiation of hypertension involves a primary increase in renal tubular sodium (Na+) reabsorption. Activation of intrarenal angiotensin type-2 receptors (AT2R) increases Na+ excretion; however, the role of intrarenal angiotensin type-2 receptors (AT2R) in the development of hypertension is unknown. Sprague-Dawley rats (N=36) underwent uninephrectomy and telemetric blood pressure probe implantation. Following a 72h recovery, two osmotic minipumps were inserted in each rat, one for chronic systemic delivery of 5% dextrose in water (D5W) or angiotensin II (Ang II, 200 ng/kg/min), and one for chronic intrarenal delivery of D5W (0.25 μL/h x 7d), highly selective AT2R agonist Compound 21 (C-21; 60 ng/kg/min x 7d), or specific AT2R antagonist PD-1223319 (PD; 10 ng/kg/min x 7d). Five groups of rats were studied: Group 1 (Control; N=10): systemic D5W + intrarenal D5W; Group 2 (Ang II-induced hypertension; N=8): systemic Ang II + intrarenal D5W; Group 3 (N=6): systemic Ang II + intrarenal C-21; Group 4 (N=6): systemic Ang II + 48h lead-in intrarenal C-21; Group 5 (N=6): systemic Ang II + intrarenal PD. Systemic Ang II infusion increased mean systolic blood pressure from 126±5 to 190±3 mm Hg over a 7d period in Group 2 (ANOVA F=73; P<1 X 10-6). Intrarenal administration of AT2R agonist C-21 (Groups 3 and 4) markedly inhibited the pressor effect of systemic Ang II (P<0.0001). Intrarenal AT2R antagonist PD (Group 5) augmented the pressor action of Ang II (P<0.0001). Consecutive 24h urinary Na+ excretion (UNaV) was reduced from 0.95±0.04 to 0.34±0.07 μmol/min (P<0.0001) on day 1 of Ang II infusion; Ang II-induced antinatriuresis was inhibited by intrarenal C-21 (P<0.0001) and augmented by intrarenal PD (P<0.0001) during the entire 7d infusion, demonstrating that one of the mechanisms to prevent Ang II-induced hypertension during intrarenal AT2R activation is the abolition of the initial increase in Na+ reabsorption that triggers the hypertensive cascade in this model. Thus, renal AT2Rs represent a novel therapeutic target for the prevention of hypertension.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Kristy Jackson ◽  
Jaideep Singh ◽  
Yen Zhi Ng ◽  
Cheng Peng ◽  
Anida Velagic ◽  
...  

Introduction: We have previously demonstrated that the naturally-occurring anti-inflammatory and pro-resolving protein Annexin-A1 (Anx-A1) limits the acute inflammatory response post myocardial infarction, but its impact on chronic inflammation, such as hypertension, has not been explored. This study aims to investigate the role of Anx-A1 in a preclinical model of hypertension, induced by angiotensin-II (Ang-II). Methods: 15-week-old male C57BL/6 or ANXA1 -/- were anesthetized (isoflurane, 2-4% v/v) and implanted with an osmotic minipump randomly assigned to receive Ang-II (0.7mg/kg/day) or vehicle (saline). Radiotelemetry recordings of blood pressure were taken at 10 intermittent timepoints from baseline to the end of the 29-day infusion period. Animals were euthanized with pentobarbitone (100mg/kg; i.p.) at endpoint and organ weights recorded and normalized to bodyweight. Left ventricle (LV) samples were stained with picrosirius red to assess total LV collagen deposition. Results: Ang II-induced mice at the end of the study had elevated mean arterial pressure (MAP), cardiac hypertrophy and fibrosis compared to normotensive mice (Table). Anx-A1 deficient mice given Ang II had an even greater increase in MAP and cardiac remodeling compared to WT. Interestingly, MAP of Anx-A1 deficient mice at baseline is significantly higher compare to C57BL/6 counterparts (Table). Conclusion: This is the first study to demonstrate that deficiency of Anx-A1 exaggerates cardiac remodeling in AngII-induced hypertension, suggesting that endogenous Anx-A1 might play previously unappreciated physiological role in regulating blood pressure. This supports the development of Anx-A1 based pharmacotherapy against hypertension-induced cardiac damage.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Xiao C Li ◽  
Ana P Leite ◽  
Liang Zhang ◽  
Jia L Zhuo

The present study tested the hypothesis that intratubular angiotensin II (Ang II) and AT 1a receptors in the proximal tubules of the kidney plays an important role in basal blood pressure control and in the development of Ang II-induced hypertension. Mutant mice with proximal tubule-specific deletion of AT 1a receptors in the kidney, PT- Agtr1a -/- , were generated to test the hypothesis. Eight groups (n=7-12 per group) of adult male wild-type (WT) and PT- Agtr1a -/- mice were infused with or without Ang II for 2 weeks (1.5 mg/kg, i.p.). Basal systolic, diastolic, and mean arterial pressures were ~13 ± 3 mmHg lower in PT- Agtr1a -/- than WT mice ( P <0.01). Basal glomerular filtration rate (GFR), as measured using transdermal FITC-sinistrin, was significantly higher in PT- Agtr1a -/- mice (WT: 160.4 ± 7.0 μl/min vs. PT- Agtr1a -/- : 186.0 ± 6.0 μl/min, P <0.05). Basal 24 h urinary Na + excretion (U Na V) was significantly higher in PT- Agtr1a -/- than WT mice ( P <0.01). In response to Ang II infusion, both WT and PT- Agtr1a -/- mice developed hypertension, and the magnitude of the pressor response to Ang II was similar in WT (Δ43 ± 3 mmHg, P <0.01) and PT- Agtr1a -/- mice (Δ39 ± 5 mmHg, P <0.01). However, the absolute blood pressure level was still 16 ± 3 mmHg lower in PT- Agtr1a -/- mice ( P <0.01). Ang II significantly decreased GFR to 132.2 ± 7.0 μl/min in WT mice ( P <0.01), and to 129.4 ± 18.6 μl/min in PT- Agtr1a -/- mice ( P <0.01), respectively. In WT mice, U Na V increased from 139.3 ± 22.3 μmol/24 h in the control group to 196.4 ± 29.6 μmol/24 h in the Ang II-infused group ( P <0.01). In PT- Agtr1a -/- mice, U Na V increased from 172.0 ± 10.2 μmol/24 h in the control group to 264.7 ± 35.4 μmol/24 h in the Ang II-infused group ( P <0.01). The pressor response to Ang II was attenuated, while the natriuretic response was augmented by losartan in WT and PT- Agtr1a -/- mice ( P <0.01). Finally, proximal tubule-specific deletion of AT 1a receptors significantly augmented the pressure-natriuresis response and natriuretic responses to acute saline infusion ( P <0.01) or a 2% high salt diet ( P <0.01). We concluded that deletion of AT 1a receptors selectively in the proximal tubules lowers basal blood pressure and attenuates Ang II-induced hypertension by increasing GFR and promoting the natriuretic response in PT- Agtr1a -/- mice.


Author(s):  
Ye Feng ◽  
Kexin Peng ◽  
Renfei Luo ◽  
Fei Wang ◽  
Tianxin Yang

Activation of PRR ([pro]renin receptor) contributes to enhancement of intrarenal RAS and renal medullary α-ENaC and thus elevated blood pressure during Ang II (angiotensin II) infusion. The goal of the present study was to test whether such action of PRR was mediated by sPRR (soluble PRR), generated by S1P (site-1 protease), a newly identified PRR cleavage protease. F1 B6129SF1/J mice were infused for 6 days with control or Ang II at 300 ng/kg per day alone or in combination with S1P inhibitor PF-429242 (PF), and blood pressure was monitored by radiotelemetry. S1P inhibition significantly attenuated Ang II–induced hypertension accompanied with suppressed urinary and renal medullary renin levels and expression of renal medullary but not renal cortical α-ENaC expression. The effects of S1P inhibition were all reversed by supplement with histidine-tagged sPRR termed as sPRR-His. Ussing chamber technique was performed to determine amiloride-sensitive short-circuit current, an index of ENaC activity in confluent mouse cortical collecting duct cell line cells exposed for 24 hours to Ang II, Ang II + PF, or Ang II + PF + sPRR-His. Ang II–induced ENaC activity was blocked by PF, which was reversed by sPRR-His. Together, these results support that S1P-derived sPRR mediates Ang II–induced hypertension through enhancement of intrarenal renin level and activation of ENaC.


2018 ◽  
Vol 6 ◽  
pp. 205031211882111 ◽  
Author(s):  
Demetra S Gibson ◽  
Aviva G Nathan ◽  
Michael T Quinn ◽  
Neda Laiteerapong

Objectives: The objectives of this study are to assess patient perspectives on their perceived benefits of hypertension and diabetes medications and determine associations between perceived benefits and demographics, adherence, and disease control. Methods: We interviewed 60 adults with type 2 diabetes and hypertension on oral medications. Participants were asked what benefits they expected from taking their medications. Transcripts were analyzed using a modified template approach. Benefits were categorized into short-term, long-term, or misconceptions (e.g. “medications cure diabetes”). Associations between perceived benefits and demographics, adherence, hemoglobin A1c, and blood pressure were analyzed. Results: In general, participants had relatively high self-reported medication adherence and well-controlled disease. All participants identified benefits of their hypertension medications; however, only 85% identified benefits of their diabetes medications. Half described only short-term benefits (e.g. lower blood sugar) (48%); almost one-third described both short- and long-term benefits (e.g. prevent complications) (30% and 28%, respectively). In multivariate analysis, participants with higher comorbidity were more likely to name long-term benefits of hypertension medications (odds ratio 13.3 (1.8–97.8), p = 0.01). Discussion: Participants perceived short-term benefits of hypertension and diabetes medications more often than long-term benefits; participants with higher comorbidity identified more long-term benefits. Further studies are warranted to determine whether additional education on long-term benefits may improve adherence.


Sign in / Sign up

Export Citation Format

Share Document