Abstract P233: Inhibition Of Aldosterone Synthesis In Non-human Primates By PB6440, The Novel Highly Selective And Potent CYP11B2 Inhibitor

Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Bertram Pitt ◽  
Deepak L Bhatt ◽  
Karen Morris ◽  
J. David Becherer ◽  
William Hoekstra ◽  
...  

Aldosterone is an important mineralocorticoid responsible for fluid and electrolyte homeostasis produced by aldosterone synthase (CYP11B2). An aldosterone synthase inhibitor (ASI) may be a therapeutic option for primary aldosteronism-related conditions such as resistant hypertension. An ASI with sufficient selectivity for CYP11B2 versus the similar cortisol-producing enzyme CYP11B1 has remained elusive. PB6440 is a novel ASI that is potent and highly selective for CYP11B2. In vitro studies demonstrated 200-300-fold selectivity of PB6440 for human CYP11B2 compared to human CYP11B1. In single and multiple dose cynomolgus monkey studies of orally administered PB6440, dose-and concentration-dependent reduction of plasma aldosterone after ACTH challenge was observed with >90% reduction at higher doses. Consistent with its high selectivity, PB6440 had little effect on the CYP11B1 cortisol pathway. Plasma levels of cortisol, 11-deoxycortisol, and deoxycorticosterone, remained unchanged even at high doses of PB6440. Systolic and diastolic blood pressure was reduced in a dose-dependent manner. Circulating half-life of PB6440 was approximately 17 hours with high oral bioavailability. In summary, PB6440 is a highly selective ASI that demonstrated sustained aldosterone suppression for 14 days with no effect on the CYP11B1 pathway in non-human primates. In single and multiple dose studies, PB6440 appeared well tolerated, demonstrating good oral bioavailability, and a PK profile supportive of once daily dosing. These results suggest that PB6440 may be useful in humans as a novel therapeutic for treating hypertension or other conditions caused by excess aldosterone.

Author(s):  
Ekta Shirbhate ◽  
Preeti Patel ◽  
Vijay K Patel ◽  
Ravichandran Veerasamy ◽  
Prabodh C Sharma ◽  
...  

: The novel coronavirus disease-19 (COVID-19), a global pandemic that emerged from Wuhan, China has today travelled all around the world, so far 216 countries or territories with 21,732,472 people infected and 770,866 deaths globally (as per WHO COVID-19 update dated August 18, 2020). Continuous efforts are being made to repurpose the existing drugs and develop vaccines for combating this infection. Despite, to date, no certified antiviral treatment or vaccine prevails. Although, few candidates have displayed their efficacy in in vitro studies and are being repurposed for COVID-19 treatment. This article summarizes synthetic and semi-synthetic compounds displaying potent activity in their clinical experiences or studies against COVID-19 and also focuses on mode of action of drugs being repositioned against COVID-19.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Kiranjit K Sran ◽  
Yun Li ◽  
Saeid Ghavami ◽  
Melanie Ngo ◽  
Rakesh C Arora ◽  
...  

Cardiovascular diseases (CVD) leading to heart failure are associated with myocardial cell loss and cardiac fibrosis. Hydroxymethylglutaryl-Coenzyme-A Reductase (HMGR) inhibitors ("statins") are widely used to limit cardiovascular events in patients with hypercholesterolemia and CVD by altering their lipid profile. HMGR inhibition reduces cholesterol precursor L-mevalonate production, whose depletion induces autophagy, apoptosis, and endoplasmic reticulum stress in various cell types. However it is unclear if this is a class effect or a phenomenon specific to various compounds. We examined the in vitro effect of HMGR inhibition on human atrial fibroblast (hATF) viability with particular reference to hydrophilic vs lipophilic compounds. Hypothesis- Lipophilic statins induce cell death in primary hATF via mevalonate depletion; whereas hydrophilic statins do not have any effect on hATF viability. IRB approval was obtained for collection of hATF from consenting patients undergoing open heart surgery. Cells were treated with atorvastatin, simvastatin or pravastatin (0.1, 1.0 or 10 λM) for 24, 48, 72 or 96 hours. Expression of proteins involved in the regulation of apoptosis and autophagy was assessed using immunoblotting. Cell viability was assessed using MTT assay. Treatment of hATF with 0.1 - 10 λM atorvastatin or simvastatin (lipophilic statins) resulted in progressively reduced cell viability in time and dose-dependent manner. Viability could be rescued by coincubation with mevalonate. Expression of key apoptotic cascade proteins -Bcl2, Bax and cleaved Caspase3 showed a clear induction of apoptosis. Also, there was an increase in Atg5-12 expression at 24h indicating induction of early autophagic response. Pravastatin (hydrophilic statin) did not affect cell viability or autophagy and apoptosis. We conclude that statin-induced cell death is mediated by mevalonate depletion, which activates intrinsic apoptotic pathways in hATF. Lipophilic statins impair the viability of hATFs in vitro, whereas hydrophilic statins have no effect on cell growth and cell viability of hATFs. This may represent an additional pleiotropic effect of statins, and may represent a novel therapeutic option for the prevention and treatment of cardiac fibrosis.


2000 ◽  
Vol 279 (3) ◽  
pp. H882-H888 ◽  
Author(s):  
Naruto Matsuda ◽  
Kathleen G. Morgan ◽  
Frank W. Sellke

The effects of the potassium (K+) channel opener pinacidil (Pin) on the coronary smooth muscle Ca2+-myosin light chain (MLC) phosphorylation pathway under hypothermic K+cardioplegia were determined by use of an in vitro microvessel model. Rat coronary arterioles (100–260 μm in diameter) were subjected to 60 min of simulated hypothermic (20°C) K+cardioplegic solutions (K+= 25 mM). We first characterized the time course of changes in intracellular Ca2+concentration, MLC phosphorylation, and diameter and observed that the K+cardioplegia-related vasoconstriction was associated with an activation of the Ca2+-MLC phosphorylation pathway. Supplementation with Pin effectively suppressed the Ca2+accumulation and MLC phosphorylation in a dose-dependent manner and subsequently maintained a small decrease in vasomotor tone. The ATP-sensitive K+(KATP)-channel blocker glibenclamide, but not the nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester, significantly inhibited the effect of Pin. K+cardioplegia augments the coronary Ca2+-MLC pathway and results in vasoconstriction. Pin effectively prevents the activation of this pathway and maintains adequate vasorelaxation during K+cardioplegia through a KATP-channel mechanism not coupled with the endothelium-derived NO signaling cascade.


2008 ◽  
Vol 52 (6) ◽  
pp. 1929-1933 ◽  
Author(s):  
Elisabetta Spreghini ◽  
Carmelo Massimo Maida ◽  
Serena Tomassetti ◽  
Fiorenza Orlando ◽  
Daniele Giannini ◽  
...  

ABSTRACT We investigated the in vitro activities of posaconazole (POS), fluconazole (FLC), amphotericin B (AMB), and caspofungin (CAS) against four clinical isolates of Candida glabrata with various susceptibilities to FLC (FLC MICs ranging from 1.0 to >64 μg/ml). POS MICs ranged from ≤0.03 to 0.5 μg/ml; AMB MICs ranged from 0.25 to 2.0 μg/ml, while CAS MICs ranged from 0.03 to 0.25 μg/ml. When FLC MICs increased, so did POS MICs, although we did not observe any isolate with a POS MIC greater than 0.5 μg/ml. Time-kill experiments showed that POS, FLC, and CAS were fungistatic against all isolates, while AMB at eight times the MIC was fungicidal against three out of four isolates of C. glabrata tested. Then, we investigated the activity of POS in an experimental model of disseminated candidiasis using three different isolates of C. glabrata: one susceptible to FLC (S; FLC MICs ranging from 1.0 to 4.0 μg/ml; POS MIC of ≤0.03 μg/ml), one susceptible in a dose-dependent manner (SDD; FLC MICs ranging from 32 to 64 μg/ml; POS MICs ranging from 0.125 to 0.25 μg/ml), and another one resistant to FLC (R; FLC MIC of >64 μg/ml; POS MIC of 0.5 μg/ml). FLC significantly reduced the kidney burden of mice infected with the S strain (P = 0.0070) but not of those infected with the S-DD and R strains. POS was significantly effective against all three isolates at reducing the kidney fungal burden with respect to the controls (P ranging from 0.0003 to 0.029). In conclusion, our data suggest that POS may be a useful option in the management of systemic infections caused by C. glabrata. Additionally, the new triazole may be a therapeutic option in those cases where an FLC-resistant isolate is found to retain a relatively low POS MIC.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 876-876
Author(s):  
Alex Gatt ◽  
Joost van Veen ◽  
Peter Cooper ◽  
Steve Kitchen ◽  
Michael Makris

Abstract Antidotes to the ever-growing number of anticoagulants are always desirable in order to placate bleeding in emergencies. In general, the older anticoagulants like coumarins and unfractionated heparin (UFH) have proven reversal agents, whereas the newer ones do not. We studied the in vitro effect of 5 different heparinoids (UFH, Tinzaparin, Enoxaparin, Fondaparinux and Danaparoid) on the calibrated automated thrombogram. The assay uses a fluorogenic substrate that is cleaved by the thrombin formed after the addition of plasma to 5pM tissue factor, 4μM phospholipids and calcium chloride. We investigated all the parameters generated by dedicated software (Thrombinoscope™) ie the lag time (LT), the time to peak (ttpeak), the endogenous thrombin potential (ETP) and the peak thrombin. All the five anticoagulants tested inhibited thrombin generation (TG) in a concentration dependent manner. We subsequently analysed the in vitro effect of different concentrations of six potential reversal agents on correcting TG parameters of maximally inhibited plasma for each anticoagulant. These were protamine sulphate at 2.5, 5 & 8μg/ml, activated FVIIa (Novoseven®) at 5, 10 & 50μg/ml, FEIBA® at 0.5,1 & 2U/ml, Beriplex® at 0.3, 0.6 & 1.2U/ml, Prothromplex® TIM4 at 0.4, 0.8 & 1.8U/ml and fresh frozen plasma (FFP) at 250, 500 & 750μl/ml. The three concentrations reflect the recommended therapeutic doses for each agent together with lower and higher doses than normally used. As predicted, UFH (final concentration 0.527U/ml) was completely reversed with a standard protamine concentration of 5μg/ml. However, the highest dose of protamine gave slightly lower TG, indicating that higher concentrations of protamine sulphate can have a paradoxical ‘anticoagulant’ effect. High doses of FEIBA (2U/ml) and FVIIa (50μg/ml) restored ~50% of thrombin generation parameters. Tinzaparin (at 1antiXaUnit/ml) was also completely neutralised by protamine. However, a higher concentration of 8μg/ml protamine was required. This effect was not seen with Enoxaparin with this higher concentration of protamine reversing only ~40% of the ETP, 21% of the peak thrombin, 71% of ttpeak and 72% of the LT. There was no positive effect of protamine on Fondaparinux (3μg/ml) and Danaparoid (1antiXa U/ml)-treated plasma. Whereas Danaparoid seemed relatively resistant to all six reversal agents, Fondaparinux effect was completely neutralised by FVIIa at concentrations between 10–50μg/ml. This study highlights the differences in neutralisation of different low molecular weight heparins and UFH. In particular, Tinzaparin was much more readily reversed with protamine sulphate than Enoxaparin. It also indicates that high doses of FVIIa could completely reverse Fondaparinux anticoagulation.


2006 ◽  
Vol 74 (5) ◽  
pp. 2985-2995 ◽  
Author(s):  
JoAnn M. Tufariello ◽  
Kaixia Mi ◽  
Jiayong Xu ◽  
Yukari C. Manabe ◽  
Anup K. Kesavan ◽  
...  

ABSTRACT Approximately one-third of the human population is latently infected with Mycobacterium tuberculosis, comprising a critical reservoir for disease reactivation. Despite the importance of latency in maintaining M. tuberculosis in the human population, little is known about the mycobacterial factors that regulate persistence and reactivation. Previous in vitro studies have implicated a family of five related M. tuberculosis proteins, called resuscitation promoting factors (Rpfs), in regulating mycobacterial growth. We studied the in vivo role of M. tuberculosis rpf genes in an established mouse model of M. tuberculosis persistence and reactivation. After an aerosol infection with the M. tuberculosis Erdman wild type (Erdman) or single-deletion rpf mutants to establish chronic infections in mice, reactivation was induced by administration of the nitric oxide (NO) synthase inhibitor aminoguanidine. Of the five rpf deletion mutants tested, one (ΔRv1009) exhibited a delayed reactivation phenotype, manifested by delayed postreactivation growth kinetics and prolonged median survival times among infected animals. Immunophenotypic analysis suggested differences in pulmonary B-cell responses between Erdman- and ΔRv1009-infected mice at advanced stages of reactivation. Analysis of rpf gene expression in the lungs of Erdman-infected mice revealed that relative expression of four of the five rpf-like genes was diminished at late times following reactivation, when bacterial numbers had increased substantially, suggesting that rpf gene expression may be regulated in a growth phase-dependent manner. To our knowledge, ΔRv1009 is the first M. tuberculosis mutant to have a specific defect in reactivation without accompanying growth defects in vitro or during acute infection in vivo.


2004 ◽  
Vol 286 (5) ◽  
pp. H1910-H1915 ◽  
Author(s):  
Sergey V. Brodsky ◽  
Fan Zhang ◽  
Alberto Nasjletti ◽  
Michael S. Goligorsky

Endothelial cell dysfunction (ECD) is emerging as the common denominator for diverse and highly prevalent cardiovascular diseases. Recently, an increased number of procoagulant circulating endothelial microparticles (EMPs) has been identified in patients with acute myocardial ischemia, preeclampsia, and diabetes, which suggests that these particles represent a surrogate marker of ECD. Our previous studies showed procoagulant potential of endothelial microparticles and mobilization of microparticles by PAI-1. The aim of this study was to test the effects of isolated EMPs on the vascular endothelium. EMPs impaired ACh-induced vasorelaxation and nitric oxide production by aortic rings obtained from Sprague-Dawley rats in a concentration-dependent manner. This effect was accompanied by increased superoxide production by aortic rings and cultured endothelial cells that were coincubated with EMPs and was inhibited by a SOD mimetic and blunted by an endothelial nitric oxide synthase inhibitor. Superoxide was also produced by isolated EMP. In addition, p22(phox) subunit of NADPH-oxidase was detected in EMP. Our data strongly suggest that circulating EMPs directly affect the endothelium and thus not only act as a marker for ECD but also aggravate preexisting ECD.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2503
Author(s):  
Hitomi Sudo ◽  
Atsushi B. Tsuji ◽  
Aya Sugyo ◽  
Mika K. Kaneko ◽  
Yukinari Kato ◽  
...  

The prognosis of advanced mesothelioma is poor. Podoplanin (PDPN) is highly expressed in most malignant mesothelioma. This study aimed to evaluate the potential alpha-radioimmunotherapy (RIT) with a newly developed anti-PDPN antibody, NZ-16, compared with a previous antibody, NZ-12. Methods: The in vitro properties of radiolabeled antibodies were evaluated by cell binding and competitive inhibition assays using PDPN-expressing H226 mesothelioma cells. The biodistribution of 111In-labeled antibodies was studied in tumor-bearing mice. The absorbed doses were estimated based on biodistribution data. Tumor volumes and body weights of mice treated with 90Y- and 225Ac-labeled NZ-16 were measured for 56 days. Histologic analysis was conducted. Results: The radiolabeled NZ-16 specifically bound to H226 cells with higher affinity than NZ-12. The biodistribution studies showed higher tumor uptake of radiolabeled NZ-16 compared with NZ-12, providing higher absorbed doses to tumors. RIT with 225Ac- and 90Y-labeled NZ-16 had a significantly higher antitumor effect than RIT with 90Y-labeled NZ-12. 225Ac-labeled NZ-16 induced a larger amount of necrotic change and showed a tendency to suppress tumor volumes and prolonged survival than 90Y-labeled NZ-16. There is no obvious adverse effect. Conclusions: Alpha-RIT with the newly developed NZ-16 is a promising therapeutic option for malignant mesothelioma.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2525-2525
Author(s):  
Marc S. Raab ◽  
Iris Breitkreutz ◽  
Podar Klaus ◽  
Jing Zhang ◽  
Simona Blotta ◽  
...  

Abstract Multitargeted treatment approaches have been shown to be more effective than single agent therapy in multiple myeloma (MM). In addition, agents targeting not only the MM cells directly but also their microenvironment, like bone marrow stromal cells (BMSCs), endothelial cells, and osteoclasts (OCLs) causing enhancement of tumor cell growth, angiogenesis, and MM bone disease, respectively, are promising new treatment modalities for this still non-curable disease.Here we investigated the novel, orally available multi-kinase inhibitor BAY 73-4506, currently in phase I clinical trials, for its therapeutic effect in MM. BAY is a potent inhibitor of angiogenic (VEGFR 1-3, PDGFR-b), as well as oncogenic, kinases (cKIT, RET, FGFR, Raf). We first tested the ability of BAY to suppress MM cell proliferation and survival in a wide array of MM cell lines (MM.1S, RPMI 8226, NCI H929, OPM2, KMS11, KMS 18, INA6, U266, KMS12BM, S6B45), including those resistant to conventional chemotherapeutics (MM.1R, Dox40, LR5). Our data show that BAY is active in all cell lines tested in a low micromolar range equivalent to concentrations achieved in patient plasma during the first clinical trial in solid tumors. Importantly, BAY also overcomes the growth advantage conferred in a BMSC-MM, as well as an endothelial cell-MM, coculture system. BAY treatment abrogates MEK, ERK and AKT phosphorylation in a time and dose dependent manner, followed by induction of apoptosis, evidenced by Annexin staining and DNA fragmentation. Since VEGF signaling pathway is a potent inducer of angiogenesis and BAY targets VEGFR 1-3, we examined anti-angiogenic properties of BAY. This compound inhibits endothelial cell growth and endothelial cell tubuli formation in vitro at concentrations less than 1mM; moreover, BAY markedly inhibits the VEGF-induced cell migration on fibronectin. Activation of MAP kinase is a critical event during OCL differentiation, activation, and survival; BAY inhibits osteoclastogenesis, evidenced by blockade of M-CSF/RANKL-triggered differentiation of mononuclear cells to TRAP-positive osteoclasts, an important marker of osteoclastogenesis. Finally, combination treatment of BAY with dexamethasone shows synergistic effects on MM cell growth and survival. These in vitro experiments on the effects of BAY on MM tumor cells directly, in co-culture with endothelial or BMSCs, as well as on osteoclast differentiation, provides the basis for its evaluation in a murine model of human MM to confirm these promising in vitro effects of this novel multi-kinase inhibitor, finally leading to clinical evaluation to improve patient outcome.


2012 ◽  
Vol 40 (02) ◽  
pp. 415-427 ◽  
Author(s):  
Chiu-Mei Lin ◽  
Yen-Hsu Chen ◽  
Jiann-Ruey Ong ◽  
Hon-Ping Ma ◽  
Kou-Gi Shyu ◽  
...  

Constitutive activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway occurs commonly in cancer cells and endothelial cells, and contributes to angiogenesis. Wogonin is a compound with many biologically relevant properties. We previously reported that wogonin blocked IL-6-induced angiogenesis through suppression of VEGF expression, an important regulator of angiogenesis. However, the pathway involved in the suppressive effect of wogonin on IL-6-induced VEGF has not been completely clarified. This study aimed to investigate the molecular mechanisms participating in the suppression of wogonin on IL-6-induced VEGF in vitro, focusing on IL-6R/JAK1/STAT3/VEGF pathway. Both STAT3 siRNA and wogonin treatment resulted in an abolition of the expression of VEGF. Moreover, our data revealed that wogonin treatment after STAT3 knock-down did not further suppress VEGF expression. The addition of IL-6R siRNA or wogonin resulted in a decrease in the expression level of the phosphorylated JAK1 protein. Furthermore, wogonin significantly decreased the amount of phosphorylated STAT3. Finally, by EMSA, wogonin suppressed IL-6-induced STAT3 binding activity in a concentration-dependent manner. Taken together, our results show that wogonin suppresses IL-6-induced VEGF by modulating the IL-6R/JAK1/STAT3 signaling pathway. Based on this study, we suggest that wogonin may provide a new potential therapeutic option for treatment of IL-6-related pathological angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document