Functional Role of Wogonin in Anti-Angiogenesis

2012 ◽  
Vol 40 (02) ◽  
pp. 415-427 ◽  
Author(s):  
Chiu-Mei Lin ◽  
Yen-Hsu Chen ◽  
Jiann-Ruey Ong ◽  
Hon-Ping Ma ◽  
Kou-Gi Shyu ◽  
...  

Constitutive activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway occurs commonly in cancer cells and endothelial cells, and contributes to angiogenesis. Wogonin is a compound with many biologically relevant properties. We previously reported that wogonin blocked IL-6-induced angiogenesis through suppression of VEGF expression, an important regulator of angiogenesis. However, the pathway involved in the suppressive effect of wogonin on IL-6-induced VEGF has not been completely clarified. This study aimed to investigate the molecular mechanisms participating in the suppression of wogonin on IL-6-induced VEGF in vitro, focusing on IL-6R/JAK1/STAT3/VEGF pathway. Both STAT3 siRNA and wogonin treatment resulted in an abolition of the expression of VEGF. Moreover, our data revealed that wogonin treatment after STAT3 knock-down did not further suppress VEGF expression. The addition of IL-6R siRNA or wogonin resulted in a decrease in the expression level of the phosphorylated JAK1 protein. Furthermore, wogonin significantly decreased the amount of phosphorylated STAT3. Finally, by EMSA, wogonin suppressed IL-6-induced STAT3 binding activity in a concentration-dependent manner. Taken together, our results show that wogonin suppresses IL-6-induced VEGF by modulating the IL-6R/JAK1/STAT3 signaling pathway. Based on this study, we suggest that wogonin may provide a new potential therapeutic option for treatment of IL-6-related pathological angiogenesis.

2020 ◽  
Vol 7 (9) ◽  
pp. 200441
Author(s):  
Thomas Stahnke ◽  
Beata Gajda-Deryło ◽  
Anselm G. Jünemann ◽  
Oliver Stachs ◽  
Katharina A. Sterenczak ◽  
...  

To elucidate and to inhibit post-surgical fibrotic processes after trabeculectomy in glaucoma therapy, we measured gene expression in a fibrotic cell culture model, based on transforming growth factor TGF-β induction in primary human tenon fibroblasts (hTFs), and used Connectivity Map (CMap) data for drug repositioning. We found that specific molecular mechanisms behind fibrosis are the upregulation of actins, the downregulation of CD34, and the upregulation of inflammatory cytokines such as IL6, IL11 and BMP6 . The macrolide antibiotic Josamycin (JM) reverses these molecular mechanisms according to data from the CMap, and we thus tested JM as an inhibitor of fibrosis. JM was first tested for its toxic effects on hTFs, where it showed no influence on cell viability, but inhibited hTF proliferation in a concentration-dependent manner. We then demonstrated that JM suppresses the synthesis of extracellular matrix (ECM) components. In hTFs stimulated with TGF-β1, JM specifically inhibited α-smooth muslce actin expression, suggesting that it inhibits the transformation of fibroblasts into fibrotic myofibroblasts. In addition, a decrease of components of the ECM such as fibronectin, which is involved in in vivo scarring, was observed. We conclude that JM may be a promising candidate for the treatment of fibrosis after glaucoma filtration surgery or drainage device implantation in vivo .


1992 ◽  
Vol 282 (3) ◽  
pp. 625-629 ◽  
Author(s):  
J Staňková ◽  
M Rola-Pleszczynski

We have examined the effect of leukotriene B4 (LTB4), a potent lipid proinflammatory mediator, on the expression of the proto-oncogenes c-jun and c-fos. In addition, we looked at the modulation of nuclear factors binding specifically to the AP-1 element after LTB4 stimulation. LTB4 increased the expression of the c-fos gene in a time- and concentration-dependent manner. The c-jun mRNA, which is constitutively expressed in human peripheral-blood monocytes at relatively high levels, was also slightly augmented by LTB4, although to a much lower extent than c-fos. The kinetics of expression of the two genes were also slightly different, with c-fos mRNA reaching a peak at 15 min after stimulation and c-jun at 30 min. Both messages rapidly declined thereafter. Stability of the c-fos and c-jun mRNA was not affected by LTB4, as assessed after actinomycin D treatment. Nuclear transcription studies in vitro showed that LTB4 increased the transcription of the c-fos gene 7-fold and the c-jun gene 1.4-fold. Resting monocytes contained nuclear factors binding to the AP-1 element, but stimulation of monocytes with LTB4 induced greater AP-1-binding activity of nuclear proteins. These results indicate that LTB4 may regulate the production of different cytokines by modulating the yield and/or the function of transcription factors such as AP-1-binding proto-oncogene products.


2020 ◽  
Vol 21 (5) ◽  
pp. 1692 ◽  
Author(s):  
Muntasir Billah ◽  
Anisyah Ridiandries ◽  
Usaid K Allahwala ◽  
Harshini Mudaliar ◽  
Anthony Dona ◽  
...  

Autophagy is a cellular process by which mammalian cells degrade and assist in recycling damaged organelles and proteins. This study aimed to ascertain the role of autophagy in remote ischemic preconditioning (RIPC)-induced cardioprotection. Sprague Dawley rats were subjected to RIPC at the hindlimb followed by a 30-min transient blockade of the left coronary artery to simulate ischemia reperfusion (I/R) injury. Hindlimb muscle and the heart were excised 24 h post reperfusion. RIPC prior to I/R upregulated autophagy in the rat heart at 24 h post reperfusion. In vitro, autophagy inhibition or stimulation prior to RIPC, respectively, either ameliorated or stimulated the cardioprotective effect, measured as improved cell viability to mimic the preconditioning effect. Recombinant interleukin-6 (IL-6) treatment prior to I/R increased in vitro autophagy in a dose-dependent manner, activating the Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathway without affecting the other kinase pathways, such as p38 mitogen-activated protein kinases (MAPK), and glycogen synthase kinase 3 Beta (GSK-3β) pathways. Prior to I/R, in vitro inhibition of the JAK-STAT pathway reduced autophagy upregulation despite recombinant IL-6 pre-treatment. Autophagy is an essential component of RIPC-induced cardioprotection that may upregulate autophagy through an IL-6/JAK-STAT-dependent mechanism, thus identifying a potentially new therapeutic option for the treatment of ischemic heart disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Moran Wang ◽  
Pengcheng Luo ◽  
Wei Shi ◽  
Junyi Guo ◽  
Shengqi Huo ◽  
...  

Pulmonary hypertension (PH) is a progressive and life-threatening chronic disease in which increased pulmonary artery pressure (PAP) and pulmonary vasculature remodeling are prevalent. Inhaled nitric oxide (NO) has been used in newborns to decrease PAP in the clinic; however, the effects of NO endogenous derivatives, S-nitrosothiols (SNO), on PH are still unknown. We have reported that S-nitroso-L-cysteine (CSNO), one of the endogenous derivatives of NO, inhibited RhoA activity through oxidative nitrosation of its C16/20 residues, which may be beneficial for both vasodilation and remodeling. In this study, we presented data to show that inhaled CSNO attenuated PAP in the monocrotaline- (MCT-) induced PH rats and, moreover, improved right ventricular (RV) hypertrophy and fibrosis induced by RV overloaded pressure. In addition, aerosolized CSNO significantly inhibited the hyperactivation of signal transducers and activators of transduction 3 (STAT3) and extracellular regulated protein kinases (ERK) pathways in the lung of MCT-induced rats. CSNO also regulated the expression of smooth muscle contractile protein and improved aberrant endoplasmic reticulum (ER) stress and mitophagy in lung tissues following MCT induction. On the other hand, CSNO inhibited reactive oxygen species (ROS) production in vitro, which is induced by angiotensin II (AngII) as well as interleukin 6 (IL-6). In addition, CSNO inhibited excessive ER stress and mitophagy induced by AngII and IL-6 in vitro; finally, STAT3 and ERK phosphorylation was inhibited by CSNO in a concentration-dependent manner. Taken together, CSNO led to pulmonary artery relaxation and regulated pulmonary circulation remodeling through anti-ROS and anti-inflammatory pathways and may be used as a therapeutic option for PH treatment.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6348
Author(s):  
Musaddique Hussain ◽  
Hazoor Bakhsh ◽  
Shahzada Khurram Syed ◽  
Malik Saad Ullah ◽  
Ali M. Alqahtani ◽  
...  

Parmotremaperlatumis traditionally used in different areas of Pakistan to treat gastrointestinal, respiratory, and vascular diseases. This study evaluates the underlying mechanisms for traditional uses of P. perlatumin diarrhea, asthma, and hypertension. In vitro pharmacological studies were conducted using isolated jejunum, trachea, and aortic preparations, while the cytotoxic study was conducted in mice. Crude extract of P. perlatum(Pp.Cr), comprising appreciable quantities of alkaloids and flavonoids, relaxed spontaneously contracting jejunum preparation, K+ (80 mM)-induced, and carbachol (1 µM)-induced jejunum contractions in a concentration-dependent manner similar to dicyclomine and dantrolene. Pp.Cr showed a rightward parallel shift of concentration-response curves (CRCs) of Cch after a non-parallel shift similarto dicyclomine and shifted CRCs of Ca+2 to rightward much likeverapamil and dantrolene, demonstrating the coexistence of antimuscarinic and Ca+2 antagonistic mechanism. Furthermore, Pp.Cr, dicyclomine, and dantrolene relaxed K+ (80 mM)-induced and Cch (1 µM)-induced tracheal contractions and shifted rightward CRCs of Cch similar to dicyclomine, signifying the dual blockade. Additionally, Pp.Cr also relaxed the K+ (80 mM)-induced and phenylephrine (1 µM)-induced aortic contraction, similarly to verapamil and dantrolene, suggesting Ca+2 channel antagonism. Here, we explored for the first time thespasmolytic and bronchodilator effects of Pp.Crand whether they maybe due to the dual blockade of Ca+2 channels and muscarinic receptors, while the vasodilator effect might be owing to Ca+2 antagonism. Our results provide the pharmacological evidence that P. perlatumcould be a new potential therapeutic option to treat gastrointestinal, respiratory, and vascular diseases. Hence, there is a need for further research to explore bioactive constituent of P. perlatumas well as further investigation by suitable experimental models are required to further confirm the importance and usefulness of P. perlatumin diarrhea, asthma, and hypertension treatment.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4813-4813
Author(s):  
Chris J Pepper ◽  
Hani Y Osman ◽  
Saman Hewamana ◽  
Elisabeth J Walsby ◽  
Alan K Burnett ◽  
...  

Abstract Abstract 4813 Standard treatments for acute myeloid leukaemia (AML) result in a median survival of approximately 1 year. There is now a realisation that in order to significantly improve outcomes in this disease more targeted therapies that take account of the specific biology of the tumour cell are required. L-Gossypol is a polyphenolic oil cotton seed extract that has anti-tumour activity against a range of haematological malignancies but has never been evaluated in AML cells. It is known to act as a BH3-mimetic, binding to the BH3 pocket of anti-apoptotic proteins and displacing pro-death partners to induce apoptosis. However, knowledge of the molecular events that underpin its downstream effects is limited. In this study we analysed the in vitro effects of L-Gossypol in 50 primary AML samples in order to determine its efficacy and mode of action. Apoptosis was induced in all the samples tested in a dose- and time-dependent manner as evidenced by increased Annexin V / propidium iodide labelling and the activation of caspase-9 and caspase-3. The median LD50 value (the concentration of drug required to kill 50% of the cells) was 27.5μM ± 18.3μM. There was no association between LD50 and age, sex, presenting white cell count, FLT3 mutation status or karyotype. Mechanistically, L-gossypol decreased the DNA binding activity of the NF-κB subunit, Rel A, in a concentration-dependent manner; this inhibition was evident after only 4 hours and preceded the induction of apoptosis. Furthermore, treatment with L-Gossypol inhibited the transcription of the NF-κB-regulated genes CFLAR, BCL2, BIRC5 and MCL1 in the same timeframe. Finally, studies of Mcl-1 protein expression showed down regulation in a dose-dependent manner but this was only apparent after 8 hours exposure to L-Gossypol. Taken together, our data demonstrate that L-Gossypol works, at least in part, through the inhibition of NF-κB and our data provides a rationale for clinical investigations of this agent in AML patients. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 84 (1-2) ◽  
pp. 79-91 ◽  
Author(s):  
Amin F. Majdalawieh ◽  
Hyo-Sung Ro

Background: Foam cell formation resulting from disrupted macrophage cholesterol efflux, which is triggered by PPARγ1 and LXRα, is a hallmark of atherosclerosis. Sesamin and sesame oil exert anti-atherogenic effects in vivo. However, the exact molecular mechanisms underlying such effects are not fully understood. Aim: This study examines the potential effects of sesamin (0, 25, 50, 75, 100 μM) on PPARγ1 and LXRα expression and transcriptional activity as well as macrophage cholesterol efflux. Methods: PPARγ1 and LXRα expression and transcriptional activity are assessed by luciferase reporter assays. Macrophage cholesterol efflux is evaluated by ApoAI-specific cholesterol efflux assays. Results: The 50 μM, 75 μM, and 100 μM concentrations of sesamin up-regulated the expression of PPARγ1 (p< 0.001, p < 0.001, p < 0.001, respectively) and LXRα (p = 0.002, p < 0.001, p < 0.001, respectively) in a concentration-dependent manner. Moreover, 75 μM and 100 μM concentrations of sesamin led to 5.2-fold (p < 0.001) and 6.0-fold (p<0.001) increases in PPAR transcriptional activity and 3.9-fold (p< 0.001) and 4.2-fold (p < 0.001) increases in LXR transcriptional activity, respectively, in a concentration- and time-dependent manner via MAPK signaling. Consistently, 50 μM, 75 μM, and 100 μM concentrations of sesamin improved macrophage cholesterol efflux by 2.7-fold (p < 0.001), 4.2-fold (p < 0.001), and 4.2-fold (p < 0.001), respectively, via MAPK signaling. Conclusion: Our findings shed light on the molecular mechanism(s) underlying sesamin’s anti-atherogenic effects, which seem to be due, at least in part, to its ability to up-regulate PPARγ1 and LXRα expression and transcriptional activity, improving macrophage cholesterol efflux. We anticipate that sesamin may be used as a therapeutic agent for treating atherosclerosis.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


2020 ◽  
Vol 16 (3) ◽  
pp. 358-362
Author(s):  
Renan S. Teixeira ◽  
Paulo H.D. Carvalho ◽  
Jair A.K. Aguiar ◽  
Valquíria P. Medeiros ◽  
Ademar A. Da Silva Filho ◽  
...  

Background: Arctigenin is a lignan found in Arctium lappa L. (Asteraceae) that displays anti-inflammatory activities. Previous studies showed that the crude extract of A. Lappa has antitumor activity in human liver carcinoma, lung and stomach cancer cells. The aim of this study was to obtain arctigenin from A. lappa L., as well as to evaluate its antiproliferative effects in cells of liver carcinoma (HepG2) and fibroblasts (NIH/3T3). Methods: Arctigenin was obtained from the hydrolysis of arctiin, which was isolated from the crude extract of A. lappa. The effects of arctigenin and arctiin on HepG2 cell viability and cell adhesion were analyzed by MTT method. Adhesion assay was also carried out to evaluate the antitumor activity. Results: Our results showed that the analytical process to obtain arctigenin was fast and easy. In vitro experiments showed that arctigenin (107-269 μM) decreased HepG2 cells viability and did not cause cytotoxicity on NIH/3T3 cells. Arctigenin (27-269 μM) demonstrated anti-adhesion in HepG2 cells in a concentration-dependent manner, when compared with control. Conclusion: These results suggest a promising pharmacological activity for arctigenin as an antiproliferative compound.


Sign in / Sign up

Export Citation Format

Share Document