The Novel, Orally Available Multi-Kinase Inhibitor BAY 73-4506 Targets Myeloma Cells and Their Bone Marrow Microenvironment.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2525-2525
Author(s):  
Marc S. Raab ◽  
Iris Breitkreutz ◽  
Podar Klaus ◽  
Jing Zhang ◽  
Simona Blotta ◽  
...  

Abstract Multitargeted treatment approaches have been shown to be more effective than single agent therapy in multiple myeloma (MM). In addition, agents targeting not only the MM cells directly but also their microenvironment, like bone marrow stromal cells (BMSCs), endothelial cells, and osteoclasts (OCLs) causing enhancement of tumor cell growth, angiogenesis, and MM bone disease, respectively, are promising new treatment modalities for this still non-curable disease.Here we investigated the novel, orally available multi-kinase inhibitor BAY 73-4506, currently in phase I clinical trials, for its therapeutic effect in MM. BAY is a potent inhibitor of angiogenic (VEGFR 1-3, PDGFR-b), as well as oncogenic, kinases (cKIT, RET, FGFR, Raf). We first tested the ability of BAY to suppress MM cell proliferation and survival in a wide array of MM cell lines (MM.1S, RPMI 8226, NCI H929, OPM2, KMS11, KMS 18, INA6, U266, KMS12BM, S6B45), including those resistant to conventional chemotherapeutics (MM.1R, Dox40, LR5). Our data show that BAY is active in all cell lines tested in a low micromolar range equivalent to concentrations achieved in patient plasma during the first clinical trial in solid tumors. Importantly, BAY also overcomes the growth advantage conferred in a BMSC-MM, as well as an endothelial cell-MM, coculture system. BAY treatment abrogates MEK, ERK and AKT phosphorylation in a time and dose dependent manner, followed by induction of apoptosis, evidenced by Annexin staining and DNA fragmentation. Since VEGF signaling pathway is a potent inducer of angiogenesis and BAY targets VEGFR 1-3, we examined anti-angiogenic properties of BAY. This compound inhibits endothelial cell growth and endothelial cell tubuli formation in vitro at concentrations less than 1mM; moreover, BAY markedly inhibits the VEGF-induced cell migration on fibronectin. Activation of MAP kinase is a critical event during OCL differentiation, activation, and survival; BAY inhibits osteoclastogenesis, evidenced by blockade of M-CSF/RANKL-triggered differentiation of mononuclear cells to TRAP-positive osteoclasts, an important marker of osteoclastogenesis. Finally, combination treatment of BAY with dexamethasone shows synergistic effects on MM cell growth and survival. These in vitro experiments on the effects of BAY on MM tumor cells directly, in co-culture with endothelial or BMSCs, as well as on osteoclast differentiation, provides the basis for its evaluation in a murine model of human MM to confirm these promising in vitro effects of this novel multi-kinase inhibitor, finally leading to clinical evaluation to improve patient outcome.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2766-2766
Author(s):  
Iris Breitkreutz ◽  
Marc S Raab ◽  
Olaf Christensen ◽  
Alexander Zimmerhackl ◽  
Jing Zhang ◽  
...  

Abstract Agents targeting not only myeloma cells directly but also bone marrow stromal cells (BMSCs), endothelial cells, and osteoclasts (OCLs) that cause enhancement of tumor cell growth, angiogenesis, and MM bone disease, respectively, are promising new treatment modalities for multiple myeloma. Here we investigated the novel, orally available multi-kinase inhibitor BAY 73-4506 (BAY), currently in phase II clinical trials, for its therapeutic effect in MM. BAY is a potent inhibitor of angiogenic (VEGFR 1–3, PDGFR-β), as well as oncogenic, (cKIT, RET, FGFR, Raf) kinases We first tested the ability of BAY to suppress proliferation and survival in a wide array of MM cell lines, including those resistant to conventional chemotherapeutics. Our data show that BAY, in a low micromolar range that is well below concentrations achieved in patient plasma during the first clinical trial in solid tumors, induces apoptosis by caspase-9 and caspase-3 activation in all cell lines tested. Importantly, BAY also overcomes the growth advantage conferred in a BMSC-MM, as well as an endothelial cell-MM, co-culture system. BAY treatment abrogates growth factor-stimulated MEK, ERK and AKT phosphorylation at sub-micromolar concentrations. Since the VEGF signaling pathway is a potent inducer of angiogenesis and BAY targets VEGFR 1–3, we examined its anti-angiogenic properties. BAY inhibits endothelial cell growth and endothelial cell tubule formation in vitro at concentrations less than 1μM; moreover, it also markedly inhibited VEGF-induced cell migration on fibronectin. Activation of MAP kinase is a critical event during OCL differentiation, activation, and survival; and importantly, BAY also inhibits osteoclastogenesis, evidenced by blockade of M-CSF/RANKL-triggered differentiation of mononuclear cells to TRAP-positive osteoclasts. Finally, BAY significantly delays tumor growth and abrogates blood vessel formation in vivo in a xenograft mouse model of human MM. These in vitro and in vivo results provide the basis for further clinical evaluation of BAY to improve patient outcome in MM.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3460-3460 ◽  
Author(s):  
Yu-Tzu Tai ◽  
Xian-Feng Li ◽  
Iris Breitkreutz ◽  
Weihua Song ◽  
Peter Burger ◽  
...  

Abstract Activation of the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2 MAPK) signaling pathway mediates tumor cell growth in many cancers, including human multiple myeloma (MM). Specifically, this pathway mediates MM cell growth and survival induced by cytokines/growth factors (i.e. IL-6, IGF-1, CD40, BAFF) and adhesion to bone marrow stromal cells (BMSCs), thereby conferring resistance to apoptosis in the bone marrow (BM) milieu. In this study, we therefore examined the effect of the MEK1/2 inhibitor AZD6244 (ARRY-142886), on human MM cell lines, freshly isolated patient MM cells and MM cells adhered to BMSCs. AZD6244, inhibits constitutive and cytokine (IL-6, IGF-1, CD40)-stimulated ERK1/2, but not AKT phosphorylation. Importantly, AZD6244 inhibits the proliferation and survival of human MM cell lines, regardless of sensitivity to conventional chemotherapy, as well as freshly isolated patient MM cells. AZD6244 induces apoptosis in patient MM cells even in the presence of BMSCs, as evidenced by caspase 3 activity and PARP cleavage at concentrations as low as 20 nM. AZD6244 overcomes resistance to apoptosis in MM cells conferred by IL-6 and BMSCs, and inhibits IL-6 secretion induced by MM adhesion to BMSCs. AZD6244 suppresses MM cell survival/growth signaling pathways (i.e., STAT3, Bcl-2, cyclin E1, CDK1, CDK3, CDK7, p21/Cdc42/Rac1-activated kinase 1, casein kinase 1e, IRS1, c-maf) and up-regulates proapoptotic cascades (i.e., BAX, BINP3, BIM, BAG1, caspase 3, 8, 6). AZD6244 also upregulates proteins triggering cell cycle arrest (i.e. p16INK4A, p18INK4C, p21/WAF1 [Cdkn1a], p27 [kip1], p57). In addition, AZD6244 inhibits adhesion molecule expression in MM cells (i.e. integrin a4 [VLA-4], integrin b7, ICAM-1, ICAM-2, ICAM-3, catenin a1, c-maf) associated with decreased MM adhesion to BMSCs. These pleiotropic proapoptotic, anti-survival, anti-adhesion and -cytokine secretion effects of AZD6244 abrogate BMSC-derived protection of MM cells, thereby sensitizing them to both conventional (dexamethasone) and novel (perifosine, lenalidomide, and bortezomib) therapies. In contrast, AZD6244 has minimal cytotoxicity in BMSCs and does not inhibit DNA synthesis in CD40 ligand-stimulated CD19 expressing B-cells derived from normal donors at concentrations toxic to MM cells (between 0.02–2 mM). Furthermore, AZD6244 inhibits the expression/secretion of osteoclast (OC)-activating factors (i.e., macrophage inflammatory protein (MIP)-1a, MIP-1b, IL-1b, VEGF) from MM cells. It also downregulates MM growth and survival factors (IL-6, BAFF, APRIL) in OC cultures derived from MM patient peripheral blood mononuclear cells (PBMCs). Significantly, AZD6244 inhibits OC differentiation from MM PBMCs (n=10) in a dose-dependent manner. Together these results provide the preclinical basis for clinical trials with AZD6244 (ARRY-142886) in MM.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1516-1516 ◽  
Author(s):  
Aldo Roccaro ◽  
Xavier Leleu ◽  
Antonio Sacco ◽  
Xiaoying Jia ◽  
Anne-Sophie Moreau ◽  
...  

Abstract Background: WM is an incurable low-grade lymphoplasmacytic lymphoma. Bortezomib has recently demonstrated about 50% ORR in patients with relapsed WM. We therefore investigated the in vitro effect of the new proteasome inhibitor NPI-0052 (N) alone and in combination with Bortezomib (B). Methods: WM cell lines (BCWM1,WSU-WM) and IgM secreting cell lines (MEK1, Namalwa) were used. Bone marrow primary CD19+ cells and bone marrow stromal cells (BMSC) were obtained from patients with WM after informed consent. Cytotoxicity and DNA synthesis were measured using MTT assay and [3H]-thymidine uptake. Determination of the synergistic effect [combination index (CI)] of combination was calculated using the CalcuSyn software. Cell signaling and apoptotic pathways were determined by Western Blot. We also tested the effect of N on WM cells in the co-culture with BMSCs. Activity of the 20S proteasome was determined by detecting the release of the fluorophore AMC, after cleavage from the labeled substrates specific for each enzymatic activity. Results: N induced cytotoxicity and inhibition of DNA synthesis (IC50 15nM) in BCWM.1 (48 h). Similar effects were demonstrated in IgM secreting cell lines and primary CD19+ WM cells (IC50 18–30nM). No cytotoxicity was observed on peripheral blood mononuclear cells. The combination of N+B significantly inhibited BCWM.1 proliferation compared to each agent alone: B (5nM) induced cytotoxicity in 8.5%, which increased to 26%, 40% and 53% in the presence of N 2.5nM (CI:0.83), 5nM (CI:0.72) and 10nM (CI:0.7) respectively, indicating synergism. To determine the mechanism of synergy, we investigated the effect of the two agents and their combination on proteasome activity and on signaling pathways, specficially the Akt pathway. Both N and B inhibited the three proteasome activities: the combination of N+B was increased compared to the effect of each agent alone on the caspase-like (C-l) activity of the proteasome. B and N used as single agents induced 29% and 34% inhibition of the C-l activity, respectively, compared to 60% when B and N were used in combination. The C-l activity preferentially cleaves substrates with an aspartic residue in P1 position, like the substrates of the caspases. N induced caspase-8, PARP cleavage and increase of Smac as well as down-modulation of the anti-apoptotic proteins c-IAP, XIAP, survivin, Bcl-2, Mcl-1. The combination of N+B induced a stronger and more significant induction of caspase-8, -PARP cleavage, as well as caspase-3 and -9, which were not affected by using N alone. Similarly, Smac modulation resulted in a more significant induction when cells were exposed to both proteasome inhibitors. N inhibited Akt phosphorylation in BCWM.1 cells (6h) in a dose-dependent manner. GSK3 phosphorylation and ribosomal protein-S6, Akt-downstream target proteins, were also markedly inhibited. Importantly, N inhibited Akt phosphorylation and Akt activity in BCWM.1, even when combined with B, which induced increase of Akt phosphorylation. Lastly, neither exposure to IL-6 nor adherence to BMSCs conferred protection to WM cells against NPI-induced cytotoxicity. Conclusion: NPI-0052 has significant antitumor activity in WM in vitro especially in combination with Bortezomib. These results provide the framework for clinical trials in WM.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1669-1669
Author(s):  
Hirokazu Miki ◽  
Shuji Ozaki ◽  
Osamu Tanaka ◽  
Shingen Nakamura ◽  
Ayako Nakano ◽  
...  

Abstract Multiple myeloma (MM) is a plasma cell malignancy characterized by devastating bone destruction due to enhanced bone resorption and suppressed bone formation. Although high-dose chemotherapy and new agents such as thalidomide, lenalidomide, and bortezomib have shown marked anti-MM activity in clinical settings, MM remains incurable due to drug resistance mediated by interactions with osteoclasts or stroma cells. Moreover, osteolytic bone disease continues to be a major problem for many patients. Therefore, alternative approaches are necessary to overcome drug resistance and inhibit osteoclasts activity in MM. KRN5500 is a new derivative of spicamycin produced by Streptomyces alanosinicus (Kirin Pharma, Tokyo, Japan), which potently inhibits protein synthesis and induces cell death in human tumor cell lines. Phase I studies of KRN5500 in patients with solid tumors such as colon cancer and gastric cancer showed acceptable toxicity with Cmax values of 1000––3000 nM. In this study, we investigated the effects of KRN5500 against MM cells and osteoclasts in vitro and in vivo. MM cell lines such as RPMI 8226, MM.1S, INA-6, KMS12-BM, UTMC-2, TSPC-1, and OPC were incubated with various concentrations of KRN5500 for 3 days. Cell proliferation assay showed marked inhibition of cell growth with G1 arrest in these MM cells (IC50: 4–100 nM). KRN5500 (100 nM) also induced 30–90% of cell death in primary MM cells (n=7). Annexin V/propidium iodide staining showed that KRN5500 induced apoptosis of MM cells in a dose- and time-dependent manner. Western blot analysis confirmed activation of caspase-8, -9, and −3, cleavage of poly (ADP-ribose) polymerase (PARP), and down-regulation of Mcl-1. We next examined the effect of KRN5500 against MM cell lines and primary MM cells in the presence of bone marrow stroma cells and osteoclasts. Co-culture of these cells enhanced viability of MM cells; however, KRN5500 still induced strong cytotoxicity to MM cells. Of interest, KRN5500 specifically mediated apoptosis in osteoclasts but not stroma cells as assessed by TUNEL staining. More than 90% of osteoclasts were killed even at a low concentration of KRN5500 (20 nM). Finally, we evaluated the effect of KRN5500 against MM cells and osteoclasts in vivo. Two xenograft models were established in SCID mice by either subcutaneous injection of RPMI 8226 cells or intra-bone injection of INA-6 cells into subcutaneously implanted rabbit bones (SCID-rab model). These mice were treated with intraperitoneal injection of KRN5500 (5 mg/kg/dose) or saline thrice a week for 3 weeks after tumor development. In a subcutaneous tumor model, KRN5500 inhibited the tumor growth compared with control mice (increased tumor size, 232 ± 54% vs 950 ± 422%, p<0.001, n=6 per group). In a SCID-rab model, KRN5500 also inhibited MM cell growth in the bone marrow (increase of serum human sIL6-R derived from INA-6, 134 ± 19% vs 1112 ± 101%, p<0.001, n=5 per group). Notably, the destruction of the rabbit bones was also prevented in the KRN5500-treated mice as evaluated by radiography. Therefore, these results suggest that KRN5500 exerts anti-MM effects through impairing both MM cells and osteoclasts and that this unique mechanism of action provides a valuable therapeutic option to improve the prognosis in patients with MM.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 780-780
Author(s):  
Edward Allan R. Sison ◽  
Daniel Magoon ◽  
Eric Chevalier ◽  
Klaus Dembowsky ◽  
Patrick Brown

Abstract Abstract 780 Background: The interaction between the cell surface receptor CXCR4 and the chemokine SDF-1 (CXCL12) is critical in signaling between leukemic blasts and the bone marrow microenvironment. We previously demonstrated that CXCR4 is an important mediator of chemotherapy resistance, as chemotherapy-induced upregulation of s-CXCR4 in acute myeloid leukemia (AML) cell lines and primary samples led to increased SDF-1-mediated chemotaxis and increased protection by normal human bone marrow stroma from chemotherapy-induced apoptosis. We also showed that stromal protection and chemotherapy resistance could be reversed by treatment with the FDA-approved CXCR4 inhibitor plerixafor, both in vitro in stromal co-cultures of pre-B cell ALL cell lines and in vivo in xenografts of primary samples of infant MLL-rearranged ALL. Therefore, disruption of the CXCR4/SDF-1 axis is a rational means to target extrinsic survival mechanisms in acute leukemia. The novel Protein Epitope Mimetic (PEM) POL5551 is a selective and potent antagonist of CXCR4. Treatment with POL5551 inhibits vascular accumulation of CXCR4+ smooth muscle cells but its effects on ALL have not been reported. We hypothesized that treatment of ALL cell lines with POL5551 would 1) decrease s-CXCR4 expression, 2) inhibit SDF-1-mediated chemotaxis, and 3) reverse stromal-mediated protection from chemotherapy-induced apoptosis. Methods/Results: Pre-B cell ALL (697, HB11;19, NALM-6, SEMK2) and T cell ALL cell lines (CCRF-CEM-1301, Jurkat, Molt-4) were treated with dose ranges of POL5551. Cells were harvested at multiple time points over 72 hours and s-CXCR4 was measured by FACS. S-CXCR4 was potently and markedly reduced in all cell lines, with IC50 levels of <5 nM at 1 hour and IC50 levels of <20 nM at 48 hours. In comparison, 3- to 30-fold higher doses of plerixafor were needed to achieve similar levels of reduction. Simultaneous measurement of cell proliferation using the WST-1 proliferation assay demonstrated that treatment with POL5551 neither increased nor decreased leukemia cell proliferation in a significant manner. To ascertain the functionality of s-CXCR4 inhibition, we performed chemotaxis assays. Leukemia cells were treated with 10 nM POL5551 or vehicle control and placed into hanging cell culture inserts. Migration through a permeable membrane toward an SDF-1 gradient was then measured after 24 hours. Compared to control-treated cells, POL5551-treated cells had significantly decreased SDF-1-induced chemotaxis (average 38% reduction in chemotaxis in pre-B cell lines, p<0.001; average 41% reduction in T cell lines, p=0.05). We also performed co-culture experiments with normal human bone marrow stroma in the presence and absence of POL5551 to further demonstrate the functional effects of s-CXCR4 inhibition. Specifically, we cultured leukemia cells off stroma (O), on stroma (S), or pretreated with POL5551 for 30 minutes prior to plating on stroma (P+S). Cells from each culture condition were then treated with dose ranges of chemotherapy. Following treatment, we measured apoptosis by staining with Annexin V/7-AAD. IC10 through IC90 values were obtained using Calcusyn. To quantify stromal protection, we calculated a Protective Index (PI), defined as the S IC values divided by the O IC values. Thus, PI >1 signified stromal protection, while PI ≤1 signified no stromal protection. To quantify the ability of POL5551 to reverse stromal protection, we calculated a Reversal Index (RI), defined as the P+S IC values divided by the O IC values. Therefore, PI > RI indicated a decrease in stromal protection, while RI ≤1 indicated a reversal of stromal protection. Overall, stroma protected leukemia cells from chemotherapy-induced apoptosis. Importantly, treatment with POL5551 abrogated stromal-mediated protection and restored chemosensitivity (eg, PI 1.182 vs. RI 0.956 for NALM-6 treated with daunorubicin +/− 20 nM POL5551, p<1×10e-9). Conclusions: The novel CXCR4 antagonist POL5551 is a potent inhibitor of CXCR4 in pre-B and T ALL cell lines with activity at nanomolar concentrations in decreasing s-CXCR4 expression, inhibiting SDF-1-induced chemotaxis, and reversing stromal-mediated protection from chemotherapy in vitro. Therefore, if our findings are confirmed in primary samples and in vivo, interruption of leukemia-microenvironment signaling with POL5551 may prove to be an effective strategy in the treatment of pre-B and T cell ALL. Disclosures: Chevalier: Polyphor Ltd: Employment. Dembowsky:Polyphor Ltd: Employment.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2507-2507 ◽  
Author(s):  
Klaus Podar ◽  
Jing Zhang ◽  
Marc S. Raab ◽  
Sonia Vallet ◽  
Mariateresa Fulciniti ◽  
...  

Abstract Our own and other previous studies demonstrate marked anti-proliferative activity of the tyrophostin adaphostin (NSC680410) in a variety of hematologic malignancies including chronic myelocytic leukemia (CML), chronic lymphcytic leukemia (CLL), acute myelocytic leukemia (AML), and Multiple Myeloma. Here we show that adaphostin (NSC680410), similar to bortezomib, additionally inhibits tumor angiogenesis within the MM bone marrow (BM) microenvironment. This effect is elicited both indirectly by inhibition of VEGF production and secretion in MM cells, as well as directly by abrogation of endothelial cell growth. Specifically, adaphostin triggers marked downregulation of nuclear c-Myc expression in MM cells. Both adaphostin, as well as specific downregulation of c-Myc using siRNA, lead to a decrease in cobalt chloride- induced Hif-1alpha- expression and Hif-1alpha activity, as evidenced by western blot analysis and expression of Hif-1alpha- driven luciferase, respectively. Indeed secretion of the Hif-1alpha target gene VEGF is markedly inhibited in a dose- and time- dependent manner. Importantly, neither knockdown of c-Abl expression nor exogenous overexpression of caspase- cleavage- induced c-Abl fragment abrogates drug- induced Hif-1alpha downregulation or inhibition of its activity. Taken together, these results indicate the existence of a c-Myc/ Hif-1alpha- dependent, but c-Abl- independent, pathway modulating MM cell production and secretion of VEGF. In contrast, we demonstrate a direct antiangiogenic effect of adaphostin on endothelial cells, similar to H2O2, is mediated via c-Jun upregulation, inhibition of cell proliferation, and the induction of cell apoptosis. Moreover, our data further demonstrate activity of adaphostin within the BM microenvironment. Adaphostin, similar to bortezomib, significantly inhibits VEGF secretion triggered by adhesion of MM cells to BMSCs and endothelial cells. Consequently, conditioned medium derived from adaphostin- treated co-cultures markedly inhibits endothelial cell growth and tubule formation in a dose- dependent manner. Finally, we confirmed these in vitro results using an in vivo xenograft mouse model of human MM. Specifically, western blot analysis, as well as immunohistochemistry, demonstrate marked downregulation of both Hif-1alpha and CD31 in tumors isolated from adaphostin- treated animals versus control animals, confirming the in vivo antiangiogenic effect of adaphostin. Similar effects were obtained using a SCIDhu mouse model as well as a significant decrease of MM- related bone disease, due to anti- VEGF activity of adaphostin. Taken together, these data provide the rationale for the clinical evaluation of adaphostin to target both MM cells and the BM milieu to improve patient outcome in Multiple Myeloma.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3919-3919
Author(s):  
Alfons Navarro ◽  
Tania Díaz ◽  
Antonio Martinez ◽  
Anna Gaya ◽  
Mariano Monzó

Abstract Abstract 3919 Background: The constitutive activation of the JAK/STAT pathway plays an important role in the pathogenesis and proliferation of Hodgkin Lymphoma (HL). Although somatic activating point mutations in the JAK2 gene have been reported in myeloproliferative disorders (MPD), they are rarely described in HL, where JAK2 amplification is associated with mutations of regulator genes such as SOCS-1, constitutive activation of STAT proteins or miRNA deregulation. Recently, many JAK2 inhibitors, including Lestaurtinib (CEP701), have been reported to have clinical efficacy in MPD. CEP701 is a multitargeted tyrosine kinase inhibitor that potently inhibits FLT3 at nanomolar concentrations. Recent studies in MPD have further shown that CEP701 inhibitory activity is not limited to FLT3 and can suppress JAK2/STAT5 signaling through JAK2 inhibition. As a first step towards elucidating the potential role of CEP701 in HL therapy, we have analyzed its efficacy in vitro. Methods: Four HL cell lines, L-428, L-1236, HDMYZ and L-540, were assayed for proliferation, apoptosis and levels of proteins in the JAK2/STAT pathway (pJAK2, JAK2, pSTAT5, STAT5, Bcl-xL) after CEP701 treatment. 100,000 cells were plated in a 96-well plate in 100 ml culture medium with CEP701 or DMSO (vehicle control) at concentrations of 30–300 nM. After 1 or 24 hours of incubation with CEP701, the levels of the proteins and of FLT3 were analyzed by Western blot. Proliferation was analyzed with CellTiter 96 AQueous One Solution Cell Proliferation Assay (MTS) and apoptosis by CaspaseGlo 3/7 after 48 hours of treatment. Results: The proliferation analysis showed an effective dose-dependent inhibition of cell growth in the 4 HL cell lines after treatment with increasing concentrations of CEP701. At 48h, in comparison to cells treated with DMSO alone (normalized to 100%), in cells treated with 100nM of CEP701, we observed a marked inhibition of 35% in L-428, 55% in L-1236, 15% in HDMYZ and 77% in L-540. Moreover, apoptosis increased by 38%, 31%, 21% and 25%, respectively. The protein analysis showed that after one hour, CEP701 inhibited phosphorylation of JAK2 (pJAK2) and its downstream target STAT5 (pSTAT5) in a dose-dependent manner, with no changes in the non-phosphorylated proteins. The downstream target Bcl-xL also decreased. Conclusions: Taken together, these data demonstrate that growth inhibition and apoptosis activation by CEP701 in HL cells correlates with the inhibition of the JAK2/STAT5-dependent signal transduction pathway. Here we present the first biological evidence that Lestaurtinib could be a promising new agent in the treatment of patients with HL. Supported by a FIS grant (PS09/00547). Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5718-5718
Author(s):  
Yutaka Hattori ◽  
Maiko Matsushita ◽  
Noriko Tabata ◽  
Hirokazu Shiheido ◽  
Hiroshi Yanagawa ◽  
...  

Abstract BACKGROUND: Despite recent advances in the use of newly developed drugs including immune-modulatory drugs (IMiDs) such as thalidomide, lenalidomide, and pomalidomide and proteasome inhibitors such as bortezomib, carfilzomib, and MLN9708, MM is still an incurable disease. In particular, MM patients harboring 17p deletion, t(14;16), t(14;20), or t(4;14) are classified as a high-risk group and have shown significantly shorter survival. With the goal of helping prolong the survival of these high-risk MM patients, we screened 29 synthetic phthalimide derivatives and found a novel compound, 2-(2,6-diisopropylphenyl)-5-amino-1H-isoindole-1,3-dione (TC11), which induced the apoptosis of KMS34 cells with t(4;14) and del17p13. PURPOSE:The purpose of this project is to clarify preclinical effects of the synthetic phthalimide derivative, TC11, on high-risk MM cell lines and osteoclasts. Namely, anti-myeloma and anti-osteoclastogenic activities and pharmacokinetic study in mice were shown. We also try to isolate directly binding molecules. Safety issues including hematological toxicities and teratogenicity were also discussed. METHODS AND RESULTS: TC11 significantly inhibited growth of MM cell lines (IC50 4-8μM) including KMS34 and KMS11 cells which have high-risk chromosomal abnormalities. TC11 also suppressed the proliferation of all of the bone marrow cells obtained from the MM patients, in a dose-dependent manner. TC11 increased annexin V-positive fraction and induced apoptosis. TC11 was injected intraperitonealy into myeloma (KMS34 and KMS11 cells)-bearing lcr/SCID mice, and anti-myeloma activity was evaluated in vivo. Twenty mg/kg of TC11 significantly inhibited growth of KMS34 or KMS11-derived plasmacytomas. Apoptosis of MM cells was observed by histopathological examination. In order to evaluate hematological toxicity of TC11, growth of colony-forming cells was examined. In the presence of 5μM of TC11, formation of CFCs was not significantly suppressed, suggesting low hematopoietic toxicity. In the pharmacokinetic analyses using lcr mice, the plasma concentrations of TC11 was examined; Cmaxwas 18.1μM at 1.5hr (Tmax), and T1/2 was 2.5hr, when 100mg/kg of TC11 was injected. If 20mg/kg was injected, Cmaxwas 2.1μM at 1.0hr (Tmax), and T1/2 was 1.2hr. Oral administration of TC11 to Icr mice was safely carried out, and results of pharmacokinetic study will be shown. Aiming at the therapeutic use of TC11 to bone disease, anti-osteoclastogenic activity was examined. Mouse bone marrow mononuclear cells were incubated in the presence of M-CSF and RANK-ligand. Tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts was reduced in number in the presence of 1μM of TC11. It was also found that 1μM of TC11 inhibited bone resorption by pit assay. We have identified nucleophosmin 1 (NPM1) and α-tubulin as TC11-binding molecules using our unique in vitro selection system using mRNA display, in vitro virus (IVV) method. However, cereblon (CRBN) was not detected as a TC11-binding protein by this method. The immunofluorescent analysis showed that TC11-treated cells exhibited elevated levels of α-tubulin fragmentation. Together with our previous observation of induction of centrosomal disruption of HeLa cells by NPM1-knock down, TC11 may cause anti-myeloma effects via mitotic catastrophe. CONCLUSION: We have demonstrated that TC11, a novel phthalimide derivative, has anti-tumor activity against MM cells with high-risk genetic abnormality including del 17p and t(4;14), in vitro and in vivo. This novel compound also down-regulates the differentiation and function of osteoclasts. Our data provide a strong preclinical rationale for TC11 as a safe and effective drug for the treatment of high-risk MM patients with bone disease. The actions of this drug relating to α-tubulin and NPM1 remain to be further investigated. TC11 exerts its anti-myeloma effect via molecular interactions which do not involve CRBN. In addition, TC11 does not form racemate and is expected to lack teratogenicity. The results of our present study suggest that new phthalimide derivatives other than thalidomide, lenalidomide and pomalidomide could be developed by drug designing for the treatment of MM. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4387-4387
Author(s):  
Daniela Nicoleta Petrusca ◽  
Evgeny Berdyshev ◽  
Colin D. Crean ◽  
Judith L Anderson ◽  
G. David Roodman

Multiple myeloma (MM) remains incurable for the vast majority of patients due to emergence of drug resistant clones and mutations inducing drug resistant relapses. This is despite the fact that new therapies have greatly improved progression-free and overall survival for patients with standard risk myeloma. We recently found that the transcriptional repressor GFI1 is increased in bone marrow stromal cells of MM patients (MM-BMSC) where it causes prolonged suppression of osteoblast differentiation, and in CD138+ cells from MM patients, where GFI1 levels significantly correlate with disease progression. We also found that GFI1 overexpression (o/e) enhances MM cell growth and partially confers resistance to proteasome inhibitors in vitro as well as enhances tumor growth and osteoclastogenesis in vivo. Although the mechanisms responsible for these GFI1 effects in p53wt MM cells were p53-dependent, we found that GFI1 is also essential for MM cell survival regardless of their p53 status. The p53-independent mechanisms responsible for Gfi1 effects on MM cells growth and survival of are unknown. Sphingolipids are bioactive lipids that can control MM cell growth and survival. The balance between the levels of Sphingosine-1-phosphate (S1P) and its metabolic precursors ceramide (Cer) and sphingosine (SPH) form a rheostat that determines whether a cell proliferates or dies. We hypothesized that GFI1 represses SGPP1, the enzyme responsible for degrading S1P via salvage and recycling of sphingosine into long-chain ceramides. This repression changes the intracellular sphingolipid profile (Cer/S1P/SPH ratio) to maintain c-Myc upregulation in a protein phosphatase 2 (PP2A)-dependent manner, thus promoting growth and survival of MM cells. To test this hypothesis we measured S1P, SPH and Cer levels by mass spectrometry (LC-MS/MS). LC-MS/MS evaluation showed that bone marrow plasma of MM patients has significant higher levels of S1P when compared to normal donors. Moreover, intracellular S1P levels of MM.1S GFI1 o/e cells were also significantly higher as compared to those of MM.1S empty vector controls. Knock-down (KD) of Gfi1 in MM.1S cells strikingly increased SGPP1 and decreased SphK1 (the enzyme which catalyzes S1P production) mRNA levels, while GFI1 o/e cells had the opposite effect. We found that CD138+ cells isolated from MM patients expressed elevated levels of SphK1 mRNA compared to MGUS patients, and that SphK1 protein levels directly correlate with GFI1 levels in MM patient CD138+ cells and cell lines (r= 0.527). We also detected an indirect correlation (r= -0.961) between GFI1 and SGPP1 mRNA levels in five different MM cell lines. These results indicate a GFI1-dependent imbalance of the enzymes regulating S1P production. Further, KD GFI1 and SphK1 inhibition (5 μM SK1I) had a profound inhibitory effect on c-Myc protein levels and induced caspase 3 activation as detected by Western blotting, while GFI1 o/e cells had significant higher levels of c-Myc and were more resistant to SK1I treatment. Exogenous ceramide (10 μM Cer 16:0) treatment or SphK1 inhibition (5 μM SK1I), both treatments known to trigger intracellular ceramide production, significantly inhibited MM cell viability (measured by AlamarBlue), regardless of their p53 status (MM1.S p53 +/+ and KMS-11 p53 -/-). This inhibition of MM viability was GFI1-dependent, as GFI1 o/e cells were significantly more resistant to ceramide-induced cell death, which was PP2A dependent, as PP2A inhibition with okadaic acid (OA) restored it. MM.1S cells with KD of GFI1 exhibited significantly higher PP2A activity then control cells, supporting our observation that c-Myc modulation by GFI1 is PP2A-dependent. c-Myc protein levels were significantly decreased in MM.1S control cells treated with ceramide and rescued by OA pre-treatment; thus mimicking the effects of changing GFI1 levels and I2PP2A (the PP2A endogenous inhibitor) and confirms that PP2A mediates the effects of GFI1 on c-Myc. Taken together, our results show that GFI1 acts as a key regulator of MM growth and survival, at least partially through modulation of SGPP1. Therefore, targeting lipid metabolism to modulate the levels of specific bioactive lipid components that can modify cancer cell fate may provide a new and attractive therapeutic approach for MM. Disclosures Roodman: Amgen: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3360-3360
Author(s):  
Daisuke Okamura ◽  
Fumiharu Yagasaki ◽  
Tomoya Maeda ◽  
Maho Ishikawa ◽  
Itsuro Jinnai ◽  
...  

Abstract Constitutive activation of Fibroblast Growth Factor 3 (FGFR3) tyrosine kinase have been identified in various human cancers and have been reported to play an important role in some hematopoietic neoplasms. We have previously reported that TEL-FGFR3 in a patient with peripheral T-cell Lymphoma and AML conferred IL-3 independency to Ba/F3 cells and activates PLCγ, PK3K, STAT3, STAT5, MAPK through its constitutive tyrosine kinase activity in TEL-FGFR3 transfected Ba/F3 cells (TF-V5). In KMS-11, human multiple myeloma cell line which expresses constitutively active mutant FGFR3, activations of PI3K and STAT3 pathways have been reported. However, little is known about how FGFR3 tyrosine kinase (TK) activates these downstream molecules. Here, we show that PYK2, a member of focal adhesion kinases, plays a pivotal role for the activation of PI3K, STAT3 and STAT5 in FGFR3 oncogenic pathways, and is a candidate for therapeutic target. PP1/PP2, a kinase inhibitor of SRC and PYK2, inhibited the cell growth of TF-V5 and KMS-11 cells in a dose-dependent manner (IC50=15μM, 25μM respectively), not affecting the cell growth of IL-3 dependent Ba/F3 cells. Another specific SRC inhibitor did not affect the cell growth of TF-V5 and KMS-11 cells. TEL-FGFR3 transfection to Ba/F3 cells led to the overexpression of PYK2 but not FAK. Expression and phosphorylation of PYK2 were identified in KMS-11 cells. Immunoprecipitation analysis using FGFR3 TK inhibitor SU5402 showed that the activation of PYK2 which was recruited to FGFR3 was dependent on the kinase activity of FGFR3. The cell growth of TF-V5 was completely inhibited at the concentration of PP1/PP2(30μM), which inhibited auto-phosphorylation of PYK2. PP1/PP2 suppressed the activation of PI3K-ATK pathway and decreased expression of C-MYC, inducing G1-arrest of TF-V5. PP1/PP2 induced intrinsic apoptosis of TF-V5 and did not affect activation of BAX but decrease expression of BCL-2 and BCL-XL through inactivation of STAT3 and STAT5. PP1/PP2 also inhibited the activation of PI3K and STAT3 in KMS-11 cells, inducing G1-arrest and apoptosis. PP1/PP2 inhibited tyrosine kinase of PYK2 mesured by in vitro kinase assay (IC50=23μM, 13μM, respectively). Further PYK2 C-terminus Associated Protein (PAP) siRNA expression plasmid significantly decreased the proliferation of TF-V5 but not mock transfected Ba/F3 cells. Our data demonstrates that PYK2 is an attractive molecular target for FGFR3 associated hematopoietic neoplasm.


Sign in / Sign up

Export Citation Format

Share Document