Abstract 121: GRK5-NT Regulates the Activity of Calcium-Calmodulin-Dependent Transcription Factors

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Daniela Sorriento ◽  
Anna Fusco ◽  
Gaetano Santulli ◽  
Bruno Trimarco ◽  
Guido Iaccarino

We have demonstrated that the amino terminal domain (GRK5-NT), which includes the RH domain and the region of binding to calmodulin, is able to regulate cardiac hypertrophy through inhibition of NFκB. Several studies indicate that mechanical stress and neuro-hormonal activation (Angiotensin, phenylephrine, endothelin) increase the levels of intracellular calcium, therefore activating calcineurin, a serine/threonine phosphatase that dephosphorylates nuclear factor of activated T cells (NFAT). Aim of this study is to evaluate the possibility that GRK5-NT regulates calcium-calmodulin dependent transcription factors. To this aim, we infected cardiomyoblasts in culture with an adenovirus encoding for GRK5-NT (AdGRK5-NT) or treated with a synthetic protein (TAT-RH), which reproduce the only RH domain of GRK5. Hypertrophic responses were induced by chronic stimulation of α 1 adrenergic receptors with phenylephrine (PE 10 -7 M,24h) and the levels of GATA4 and NFAT3 were assessed by western blot. PE induces activation and nuclear translocation of GATA4 and NFAT3 (NFAT:+38±3%;GATA4:+46±3% vs control), the treatment with AdGRK5-NT, but TAT-RH, reduces this effect (NFAT:-68±5%;GATA4:-56±2% vs PE). These data suggest that GRK5-NT using the NT domain regulates the activation of calcium-calmodulin dependent transcription factors through a mechanism of competition for binding to calmodulin. To confirm these data, we evaluated the effect of GRK5-NT in vivo in spontaneously hypertensive and hypertrophic rats (SHR). The overexpression of GRK5-NT in the heart was induced by intracardiac injection of 10 10 pfu/ml of AdGRK5-NT. The treatment inhibits nuclear translocation of NFAT3 and GATA4 (NFAT:-55±1%;GATA4:-34±3% vs PE) and is associated with a reduction in their DNA binding activity, as assessed by EMSA (NFAT:-47±1.5%;GATA4:-33±1% vs EP). In conclusion, our data indicate that GRK5-NT is able to regulate cardiac hypertrophy in two ways: inhibition of NFκB through binding and stabilization of IκB nuclear and inhibition activity of calcium- calmodulin dependent transcription factors, possibly by competing with calmodulin binding.

1996 ◽  
Vol 318 (1) ◽  
pp. 187-193 ◽  
Author(s):  
Muriel R. JACQUIER-SARLIN ◽  
Barbara S POLLA

The heat-shock (HS) response is a ubiquitous cellular response to stress, involving the transcriptional activation of HS genes. Reactive oxygen species (ROS) have been shown to regulate the activity of a number of transcription factors. We investigated the redox regulation of the stress response and report here that in the human pre-monocytic line U937 cells, H2O2 induced a concentration-dependent transactivation and DNA-binding activity of heat-shock factor-1 (HSF-1). DNA-binding activity was, however, lower with H2O2 than with HS. We thus hypothesized a dual regulation of HSF by oxidants. We found that oxidizing agents, such as H2O2 and diamide, as well as alkylating agents, such as iodoacetic acid, abolished, in vitro, the HSF-DNA-binding activity induced by HS in vivo. The effects of H2O2in vitro were reversed by the sulphydryl reducing agent dithiothreitol and the endogenous reductor thioredoxin (TRX), while the effects of iodoacetic acid were irreversible. In addition, TRX also restored the DNA-binding activity of HSF oxidized in vivo, while it was found to be itself induced in vivo by both HS and H2O2. Thus, H2O2 exerts dual effects on the activation and the DNA-binding activity of HSF: on the one hand, H2O2 favours the nuclear translocation of HSF, while on the other, it alters HSF-DNA-binding activity, most likely by oxidizing critical cysteine residues within the DNA-binding domain. HSF thus belongs to the group of ROS-modulated transcription factors. We propose that the time required for TRX induction, which may restore the DNA-binding activity of oxidized HSF, provides an explanation for the delay in heat-shock protein synthesis upon exposure of cells to ROS.


2002 ◽  
Vol 175 (3) ◽  
pp. R13-R18 ◽  
Author(s):  
Y Macotela ◽  
C Mendoza ◽  
AM Corbacho ◽  
G Cosio ◽  
JP Eiserich ◽  
...  

The amino-terminal 16 kDa fragment of prolactin (16K PRL) promotes the expression of the inducible isoform of nitric oxide synthase (iNOS) accompanied by the production of nitric oxide (NO) by rat pulmonary fibroblasts. The present study was designed to elucidate whether the mechanism by which 16K PRL promotes iNOS expression involves the activation of nuclear factor-kappa B (NF-kappaB), a key transcription factor for iNOS induction. 16K PRL stimulated DNA-binding activity of NF-kappaB in pulmonary fibroblasts as demonstrated by gel shift assays. Likewise, fluorescence immunocytochemistry showed that 16K PRL promotes nuclear translocation of the p65 subunit of NF-kappaB. Finally, treatment with 16K PRL induced the degradation of the NF-kappaB inhibitor kappaB-beta (IkappaB-beta), and such degradation was prevented by blocking IkappaB-beta phosphorylation. Altogether, these results show that 16K PRL activates NF-kappaB nuclear translocation via the phosphorylation and degradation of IkappaB-beta. These findings are consistent with NF-kappaB being part of the signal transduction pathway activated by 16K PRL to induce iNOS expression.


Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3327-3335 ◽  
Author(s):  
Y. Sangeeta Devi ◽  
Aurora Shehu ◽  
Carlos Stocco ◽  
Julia Halperin ◽  
Jamie Le ◽  
...  

Prolactin (PRL) affects the development and function of the reproductive system by binding to two types of receptors, which differ by the size of their intracellular domain in rodents. Whereas the signaling pathway through the long form of the receptor (PRL-RL) is well characterized, signaling through the short form (PRL-RS) remains obscure. In this investigation, we examined transcription factors regulated by PRL in the ovary and decidua of mice expressing only PRL-RS in a PRL receptor null background. These mice provide a powerful in vivo model to study the selective signaling mechanism of PRL through PRL-RS independent of PRL-RL. We also examined the regulation of transcription factors in ovarian and uterine cell lines stably transfected with PRL-RS or PRL-RL. We focused our investigation on transcription factors similarly regulated in both these tissues and clearly established that signaling through PRL-RS does not activate the JaK/Stat in vivo but leads to severe down-regulation of Sp1 expression, DNA binding activity, and nuclear localization, events that appear to involve the calmodulin-dependent protein kinase pathway. Our in vivo and in culture data demonstrate that the PRL-RS activates a signaling pathway distinct from that of the PRL-RL.


1998 ◽  
Vol 9 (8) ◽  
pp. 1367-1376
Author(s):  
M Seto ◽  
S Kim ◽  
H Yoshifusa ◽  
Y Nakamura ◽  
T Masuda ◽  
...  

In vitro data support that activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) regulate the gene expression of numerous growth factors and cytokines involved in the development of glomerulonephritis (GN). However, the in vivo activation and role of these transcription factors are poorly understood. This study examines whether these transcription factors are activated in antithymocyte serum (ATS)-induced GN in vivo and whether prednisolone suppresses activation of them. As assessed by gel mobility shift assay, glomerular DNA binding activity of AP-1 containing both c-Jun and c-Fos and NF-kappaB composed of P-50 and P-65 subunits was significantly increased after ATS injection. Furthermore, as estimated by in-gel kinase assay, glomerular activity of extracellular signal-regulated kinases (ERK) and c-jun NH2-terminal kinases (JNK), which are mitogen-activated protein kinases (MAPK) known to activate AP-1 and NF-kappaB in vitro, was significantly increased after ATS injection, preceding the increase in AP-1 activity. Prednisolone treatment significantly prevented the increase in urinary protein and albumin excretion and glomerular cell proliferation in ATS-induced GN, indicating the beneficial effects of prednisolone on this GN. Prednisolone significantly suppressed the increased glomerular ERK and JNK activities and AP-1 binding activity, but not glomerular NF-kappa binding activity. This study provides the first evidence of the marked increase in glomerular MAPK activities, and AP-1 and NF-kappa binding activities in ATS-induced GN. The beneficial effect of prednisolone on this GN may be partially mediated by the suppression of MAPK, followed by the suppression of AP-1.


2003 ◽  
Vol 23 (12) ◽  
pp. 4257-4266 ◽  
Author(s):  
Jared M. Ordway ◽  
Derek Eberhart ◽  
Tom Curran

ABSTRACT Ref-1 participates in DNA repair as well as in redox regulation of transcription factor function. The redox function of Ref-1 involves reduction of oxidized cysteine residues within the DNA binding domains of several transcription factors, including Fos and Jun. Reduction of these residues is required for DNA binding, providing a redox-dependent mechanism for regulation of target gene expression. Previous in vitro studies implicated cysteine 65 of human Ref-1 (cysteine 64 of mouse Ref-1) as the redox catalytic site. We analyzed the in vivo role of cysteine 64 in redox regulation of AP-1 activity by introducing a cysteine-to-alanine point mutation into the endogenous mouse Ref-1 gene (ref-1 C64A). Unlike Ref-1 null mice, which die very early in embryonic development, homozygous ref-1 C64A mice are viable, they survive to normal life expectancy, and they display no overt abnormal phenotype. Although Ref-1 provides the major AP-1-reducing activity in murine cells, ref-1 C64A cells retain normal levels of endogenous AP-1 DNA binding activity in vivo as well as normal Fos- and Jun-reducing activity in vitro. These results demonstrate that Ref-1 cysteine 64/65 is not required for redox regulation of AP-1 DNA binding in vivo, and they challenge previous hypotheses regarding the mechanism by which Ref-1 regulates the redox-dependent activity of specific transcription factors.


1995 ◽  
Vol 15 (2) ◽  
pp. 634-641 ◽  
Author(s):  
J E Visvader ◽  
M Crossley ◽  
J Hill ◽  
S H Orkin ◽  
J M Adams

The GATA-1 and GATA-2 transcription factors, which each contain two homologous zinc fingers, are important hematopoietic regulators expressed within the erythroid, mast cell, and megakaryocytic lineages. Enforced expression of either factor in the primitive myeloid line 416B induces megakaryocytic differentiation. The features of their structure required for this activity have been explored. The ability of 12 GATA-1 mutants to promote 416B maturation was compared with their DNA-binding activity and transactivation potential. Differentiation did not require any of the seven serine residues that are phosphorylated in vivo, an N-terminal region bearing the major transactivation domain, or a C-terminal segment beyond the fingers. Removal of a consensus nuclear localization signal following the second finger did not block differentiation or nuclear translocation. The N-terminal finger was also dispensable, although its removal attenuated differentiation. In contrast, the C-terminal finger was essential, underscoring its distinct function. Remarkably, only 69 residues spanning the C-terminal finger were required to induce limited megakaryocytic differentiation. Analysis of three GATA-2 mutants led to the same conclusion. Endogenous GATA-1 mRNA was induced by most mutants and may contribute to differentiation. Because the GATA-1 C-terminal finger could bind its target site but not transactivate a minimal reporter, it may direct megakaryocytic maturation by derepressing specific genes and/or by interacting with another protein which provides the transactivation function.


2005 ◽  
Vol 25 (18) ◽  
pp. 7966-7975 ◽  
Author(s):  
Lin-Feng Chen ◽  
Samuel A. Williams ◽  
Yajun Mu ◽  
Hiroyasu Nakano ◽  
James M. Duerr ◽  
...  

ABSTRACT The nuclear functions of NF-κB p50/RelA heterodimers are regulated in part by posttranslational modifications of its RelA subunit, including phosphorylation and acetylation. Acetylation at lysines 218, 221, and 310 differentially regulates RelA's DNA binding activity, assembly with IκBα, and transcriptional activity. However, it remains unclear whether the acetylation is regulated or simply due to stimulus-coupled nuclear translocation of NF-κB. Using anti-acetylated lysine 310 RelA antibodies, we detected p300-mediated acetylation of RelA in vitro and in vivo after stimulation of cells with tumor necrosis factor alpha (TNF-α). Coexpression of catalytically inactive mutants of the catalytic subunit of protein kinase A/mitogen- and stress-activated kinase 1 or IKK1/IKK2, which phosphorylate RelA on serine 276 or serine 536, respectively, sharply inhibited RelA acetylation on lysine 310. Furthermore, phosphorylation of RelA on serine 276 or serine 536 increased assembly of phospho-RelA with p300, which enhanced acetylation on lysine 310. Reconstitution of RelA-deficient murine embryonic fibroblasts with RelA S276A or RelA S536A decreased TNF-α-induced acetylation of lysine 310 and expression of the endogenous NF-κB-responsive E-selectin gene. These findings indicate that the acetylation of RelA at lysine 310 is importantly regulated by prior phosphorylation of serines 276 and 536. Such phosphorylated and acetylated forms of RelA display enhanced transcriptional activity.


Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 661-672 ◽  
Author(s):  
Jodi L Vogel ◽  
Vincent Geuskens ◽  
Lucie Desmet ◽  
N Patrick Higgins ◽  
Ariane Toussaint

Abstract Mutations in an N-terminal 70-amino acid domain of bacteriophage Mu's repressor cause temperature-sensitive DNA-binding activity. Surprisingly, amber mutations can conditionally correct the heat-sensitive defect in three mutant forms of the repressor gene, cts25 (D43-G), cts62 (R47-Q and cts71 (M28-I), and in the appropriate bacterial host produce a heat-stable Sts phenotype (for survival of temperature shifts). Sts repressor mutants are heat sensitive when in supE or supF hosts and heat resistant when in Sup° hosts. Mutants with an Sts phenotype have amber mutations at one of three codons, Q179, Q187, or Q190. The Sts phenotype relates to the repressor size: in Sup° hosts sts repressors are shorter by seven, 10, or 18 amino acids compared to repressors in supE or supF hosts. The truncated form of the sts62-1 repressor, which lacks 18 residues (Q179–V196), binds Mu operator DNA more stably at 42° in vitro compared to its full-length counterpart (cts62 repressor). In addition to influencing temperature sensitivity, the C-terminus appears to control the susceptibility to in vivo Clp proteolysis by influencing the multimeric structure of repressor.


Sign in / Sign up

Export Citation Format

Share Document