Abstract P350: Myofibril Orientation In Cardiac Muscle And Its Implication For Heart Disease

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Weikang Ma ◽  
Henry Gong ◽  
Vivek Jani ◽  
Maicon Landim-Vieira ◽  
Maria Papadaki ◽  
...  

Rationale: Myocyte disarray is a hallmark of cardiomyopathy. However, the orientation of individual myofibrils and myofilaments and how their alignment may be altered in disease progression have been largely underexplored. This oversight has been predominantly due to a paucity of methods for objective and quantitative analysis. Objective: To introduce a novel, less-biased approach to quantify myofibrillar and myofilament orientation in cardiac muscle under near physiological conditions and demonstrate its superiority versus traditional histological assessments. Methods and Results: Using small-angle X-ray diffraction, we first investigated changes in myofibrillar orientation at increasing sarcomere lengths in skinned, relaxed, wildtype mouse myocardium by assessing the angular spread of the 1,0 equatorial reflection (angle σ). At a sarcomere length (SL) of 1.9 μm, the angle σ was 0.23±0.01 rad, decreased to 0.19±0.01 rad at a SL of 2.1 μm, and further decreased to 0.15±0.01 rad at a SL of 2.3 μm (p<0.0001). Angle σ was significantly larger in R403Q (a MYH7 HCM model) porcine myocardium (0.24±0.01 rad) compared to WT myocardium (0.14±0.005 rad, p<0.0001) as well as in biopsied human heart failure tissue (0.19±0.006 rad) when compared to non-failing samples (0.17±0.007 rad, p=0.01). These data indicate that diseased myocardium suffers from myofibrillar disorientation compared to healthy controls. Finally, using control samples, we showed that traditional, histological-based analysis of disarray can be subject to user bias and/or sampling error and lead to false positives. Conclusions: Our method for assessing myofibrillar orientation limits the artifacts introduced by traditional histological processing and provides a precise and objective metric for phenotypically characterizing myocardium. The ability to obtain excellent X-ray diffraction patterns from frozen, biopsied human myocardium opens up new avenues of inquiry regarding the relation of myofibrillar structure to function in health and disease.

2021 ◽  
Author(s):  
Weikang Ma ◽  
Henry Gong ◽  
Vivek Jani ◽  
Maicon Landim-Vieira ◽  
Maria Papadaki ◽  
...  

Myocyte disarray is a hallmark of cardiomyopathy. However, the relationship between alterations in the orientation of individual myofibrils and myofilaments to disease progression has been largely underexplored. This oversight has predominantly been due to a paucity of methods for objective and quantitative analysis. Here we introduce a novel, less-biased approach to quantify myofibrillar and myofilament orientation in cardiac muscle under near physiological conditions and demonstrate its superiority as compared to conventional histological assessments. Using small-angle X-ray diffraction, we first investigated changes in myofibrillar orientation at increasing sarcomere lengths in permeabilized, relaxed, wildtype mouse myocardium by assessing the angular spread of the 1,0 equatorial reflection (angle sigma). At a sarcomere length (SL) of 1.9 microns, the angle sigma was 0.23 +/- 0.01 rad, decreased to 0.19 +/- 0.01 rad at a SL of 2.1 microns, and further decreased to 0.15 +/- 0.01 rad at a SL of 2.3 microns (p<0.0001). Angle sigma was significantly larger in R403Q (a MYH7 HCM model) porcine myocardium (0.24 +/- 0.01 rad) compared to WT myocardium (0.14 +/- 0.005 rad, p<0.0001) as well as in human heart failure tissue (0.19 +/- 0.006 rad) when compared to non-failing samples (0.17 +/- 0.007 rad, p=0.01). These data indicate that diseased myocardium suffers from greater myofibrillar disorientation compared to healthy controls. Finally, we showed that conventional, histology-based analysis of disarray can be subject to user bias and/or sampling error and lead to false positives. Our method for directly assessing myofibrillar orientation avoids the artifacts introduced by conventional histological methods that directly assess myocyte orientation and only indirectly assess myofibrillar orientation, and provides a precise and objective metric for phenotypically characterizing myocardium. The ability to obtain excellent X-ray diffraction patterns from frozen human myocardium provides a new tool for investigating the structural bases of cardiomyopathies.


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


Author(s):  
J. P. Robinson ◽  
P. G. Lenhert

Crystallographic studies of rabbit Fc using X-ray diffraction patterns were recently reported. The unit cell constants were reported to be a = 69. 2 A°, b = 73. 1 A°, c = 60. 6 A°, B = 104° 30', space group P21, monoclinic, volume of asymmetric unit V = 148, 000 A°3. The molecular weight of the fragment was determined to be 55, 000 ± 2000 which is in agreement with earlier determinations by other methods.Fc crystals were formed in water or dilute phosphate buffer at neutral pH. The resulting crystal was a flat plate as previously described. Preparations of small crystals were negatively stained by mixing the suspension with equal volumes of 2% silicotungstate at neutral pH. A drop of the mixture was placed on a carbon coated grid and allowed to stand for a few minutes. The excess liquid was removed and the grid was immediately put in the microscope.


2020 ◽  
Vol 86 (6) ◽  
pp. 29-35
Author(s):  
V. P. Sirotinkin ◽  
O. V. Baranov ◽  
A. Yu. Fedotov ◽  
S. M. Barinov

The results of studying the phase composition of advanced calcium phosphates Ca10(PO4)6(OH)2, β-Ca3(PO4)2, α-Ca3(PO4)2, CaHPO4 · 2H2O, Ca8(HPO4)2(PO4)4 · 5H2O using an x-ray diffractometer with a curved position-sensitive detector are presented. Optimal experimental conditions (angular positions of the x-ray tube and detector, size of the slits, exposure time) were determined with allowance for possible formation of the impurity phases during synthesis. The construction features of diffractometers with a position-sensitive detector affecting the profile characteristics of x-ray diffraction peaks are considered. The composition for calibration of the diffractometer (a mixture of sodium acetate and yttrium oxide) was determined. Theoretical x-ray diffraction patterns for corresponding calcium phosphates are constructed on the basis of the literature data. These x-ray diffraction patterns were used to determine the phase composition of the advanced calcium phosphates. The features of advanced calcium phosphates, which should be taken into account during the phase analysis, are indicated. The powder of high-temperature form of tricalcium phosphate strongly adsorbs water from the environment. A strong texture is observed on the x-ray diffraction spectra of dicalcium phosphate dihydrate. A rather specific x-ray diffraction pattern of octacalcium phosphate pentahydrate revealed the only one strong peak at small angles. In all cases, significant deviations are observed for the recorded angular positions and relative intensity of the diffraction peaks. The results of the study of experimentally obtained mixtures of calcium phosphate are presented. It is shown that the graphic comparison of experimental x-ray diffraction spectra and pre-recorded spectra of the reference calcium phosphates and possible impurity phases is the most effective method. In this case, there is no need for calibration. When using this method, the total time for analysis of one sample is no more than 10 min.


1985 ◽  
Vol 50 (10) ◽  
pp. 2139-2145
Author(s):  
Alexander Muck ◽  
Eva Šantavá ◽  
Bohumil Hájek

The infrared spectra and powder X-ray diffraction patterns of polycrystalline YPO4-YCrO4 samples are studied from the point of view of their crystal symmetry. Mixed crystals of the D4h19 symmetry are formed over the region of 0-30 mol.% YPO4 in YCrO4. The Td → D2d → D2 or C2v(GS eff) correlation is appropriate for both PO43- and CrO43- anions.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lars Banko ◽  
Phillip M. Maffettone ◽  
Dennis Naujoks ◽  
Daniel Olds ◽  
Alfred Ludwig

AbstractWe apply variational autoencoders (VAE) to X-ray diffraction (XRD) data analysis on both simulated and experimental thin-film data. We show that crystal structure representations learned by a VAE reveal latent information, such as the structural similarity of textured diffraction patterns. While other artificial intelligence (AI) agents are effective at classifying XRD data into known phases, a similarly conditioned VAE is uniquely effective at knowing what it doesn’t know: it can rapidly identify data outside the distribution it was trained on, such as novel phases and mixtures. These capabilities demonstrate that a VAE is a valuable AI agent for aiding materials discovery and understanding XRD measurements both ‘on-the-fly’ and during post hoc analysis.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 312
Author(s):  
Florian Lauraux ◽  
Stéphane Labat ◽  
Sarah Yehya ◽  
Marie-Ingrid Richard ◽  
Steven J. Leake ◽  
...  

The simultaneous measurement of two Bragg reflections by Bragg coherent X-ray diffraction is demonstrated on a twinned Au crystal, which was prepared by the solid-state dewetting of a 30 nm thin gold film on a sapphire substrate. The crystal was oriented on a goniometer so that two lattice planes fulfill the Bragg condition at the same time. The Au 111 and Au 200 Bragg peaks were measured simultaneously by scanning the energy of the incident X-ray beam and recording the diffraction patterns with two two-dimensional detectors. While the former Bragg reflection is not sensitive to the twin boundary, which is oriented parallel to the crystal–substrate interface, the latter reflection is only sensitive to one part of the crystal. The volume ratio between the two parts of the twinned crystal is about 1:9, which is also confirmed by Laue microdiffraction of the same crystal. The parallel measurement of multiple Bragg reflections is essential for future in situ and operando studies, which are so far limited to either a single Bragg reflection or several in series, to facilitate the precise monitoring of both the strain field and defects during the application of external stimuli.


1936 ◽  
Vol 116 (1) ◽  
pp. 51-55 ◽  
Author(s):  
Ralph W.G. Wyckoff ◽  
Robert B. Corey

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 129
Author(s):  
Liana Vella-Zarb ◽  
Ulrich Baisch

There is much interest and focus on solid forms of famciclovir. However, in spite of the abundance of reported differences in oral bioavailability, compressibility, and other physical–chemical properties of the various crystal forms of this drug, very little precise structural analysis is available in the literature to date. The form used in the commercial formulation is the anhydrous form I. Patents and patent applications report three different anhydrous crystalline forms on the basis of unindexed powder diffraction patterns. Single-crystal and variable-temperature X-ray diffraction experiments using the commercially available anhydrous form of famciclovir were carried out and led not only to the crystal structure determination of the anhydrous form I, but also to discovery of a new crystal form of anhydrous famciclovir from powder data.


Sign in / Sign up

Export Citation Format

Share Document