Abstract WMP75: Development of a Theragnostic Probe for Stem Cell Tracking and Enhancing the Therapeutic Efficacy in a Mouse Model of Focal Ischemia

Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Xiaojing Shi ◽  
Lu Zhang ◽  
Zhijun Zhang ◽  
Yongting Wang ◽  
Guo-Yuan Yang ◽  
...  

Objectives: Mesenchymal stem cell therapy has shown therapeutic potential for ischemic stroke. However, low cell viability and lack of multimodal imaging to track stem cell distribution limit its clinical translation. Here we developed a multifunctional probe to track stem cell viability and migration in a mouse model of focal brain ischemia. Methods: A theragnostic probe was developed by cobalt protoporphyrin IX (CoPP), with photoacoustic imaging detectability into 125 Iodine modified mesoporous silica nanoparticles ( 125 I-CoPP@MSN). The effect on cell viability and differentiation were examined in vitro . Adult male ICR mice (n=40) were subjected to 90 min transient middle cerebral artery occlusion. 125 I-CoPP@MSN labeled stem cells were transplanted into the peri-infarct region after 1 day of brain ischemia. Grafted cells was monitored by SPECT and photoacoustic imaging. The cell survival was evaluated by bioluminescence imaging. Results: 125 I-CoPP@MSNs have high efficiency for labeling cells without affecting their viability and differentiation. 125 I-CoPP@MSNs increased the viability of stem cells subjected to H 2 O 2 -induced oxidant stress in vitro , compared with controls ( p <0.05). Photoacoustic and SPECT imaging showed that 90±8% of graft cells were localized in the injection site and tended to migrate at 1 day after injection. The SPECT/CT signal started to decrease from 4 to 8 days. 125 I-CoPP@MSN labeling increased graft cell viability, reduced brain atrophy volume, and improved behavioral outcomes, compared to the controls ( p <0.05). Immunostaining results showed that the number of CD31 + and DCX + cells were increased in CoPP@MSN labeled group than that in controls (p<0.05). Conclusion: We conclude that 125 I-CoPP@MSNs is a novel probe for the real-time tracking and enhancing its therapeutic efficacy in ischemic stroke therapy.

2020 ◽  
Vol 15 (1) ◽  
pp. 41-50
Author(s):  
Jingxu Guo ◽  
Shuwei Li ◽  
Hongyang Wang ◽  
Tinghui Wu ◽  
Zhenhui Wu ◽  
...  

AbstractObjectiveStem cells hold promise for treating hair loss. Here an in vitro mouse model was developed using outer root sheaths (ORSs) isolated from hair follicles for studying stem cell-mediated dermal papillary regeneration.MethodsUnder sterile conditions, structurally intact ORSs were isolated from hair follicles of 3-day-old Kunming mice and incubated in growth medium. Samples were collected daily for 5 days. Stem cell distribution, proliferation, differentiation, and migration were monitored during regeneration.ResultsCell proliferation began at the glass membrane periphery then spread gradually toward the membrane center, with the presence of CD34 and CD200 positive stem cells involved in repair initiation. Next, CD34 positive stem cells migrated down the glass membrane, where some participated in ORS formation, while other CD34 cells and CD200 positive cells migrated to hair follicle centers. Within the hair follicle matrix, stem cells divided, grew, differentiated and caused outward expansion of the glass membrane to form a dermal papillary structure containing alpha-smooth muscle actin. Neutrophils attracted to the wound site phagocytosed bacterial and cell debris to protect regenerating tissue from infection.ConclusionIsolated hair follicle ORSs can regenerate new dermal papillary structures in vitro. Stem cells and neutrophils play important roles in the regeneration process.


2019 ◽  
Vol 15 (11) ◽  
pp. 2179-2192
Author(s):  
Yuanyuan Xie ◽  
Wei Liu ◽  
Bing Zhang ◽  
Bin Wang ◽  
Liudi Wang ◽  
...  

Until now, there is no effective method for tracking transplanted stem cells in human. Ruicun (RC) is a new ultra-small SPIONs agent that has been approved by China Food and Drug Administration for iron supplementation but not as a stem cell tracer in clinic. In this study, we demonstrated magnetic resonance imaging-based tracking of RC-labeled human umbilical cord derived mesenchymal stem cells (MSCs) transplanted to locally injured site of rat spinal cords. We then comprehensively evaluated the safety and quality of the RC-labeled MSCs under good manufacturing practicecompliant conditions, to investigate the feasibility of SPIONs for inner tracking in stem cell-based therapy (SCT). Our results showed that RC labeling at appropriate dose (200 μg/mL) did not have evident impacts on characteristics of MSCs in vitro, demonstrating safety, non-carcinogenesis, and non-tissue inflammation in vivo. The systematic assessments of intracellular biocompatibility indicated that the RC labeled MSCs met with mandatory requirements and standards for law-regulation systems regarding SCT, facilitating translation of cell-tracking technologies to clinical trials.


2012 ◽  
Vol 24 (1) ◽  
pp. 215
Author(s):  
B.-R. Yi ◽  
K.-A. Hwang ◽  
K.-C. Choi

When genetically engineered with chemo- or immunotherapeutic genes, stem cells can exhibit a potent therapeutic efficacy combined with their strong tumour tropism. The stem cells were genetically engineered to express a bacterial cytosine deaminase (CD) gene and/or a human interferon-β (IFN-b) gene; thus, 2 stem cell lines, HB1.F3.CD and HB1.F3.CD.IFN-b, were generated, respectively. The CD gene, one of suicide gene, can convert the nontoxic prodrug 5-fluorocytosine (5-FC) to an active form, 5-fluorouracil (5-FU), which has a powerful cytotoxic effect on cancer cells. In addition, human IFN-b is a typical cytokine having an antitumour effect. Using reverse transcription-PCR (RT-PCR), we confirmed CD and/or IFN-b gene expression in HB1.F3 (maternal stem cells) and HB1.F3.CD and HB1.F3.CD.IFN-b cells and the expression of chemoattractant ligands and receptors including stem cell factor (SCF), CXCR4, c-kit, vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) in breast (MCF-7) and endometrial cancer (Ishikawa) cells. To determine the migratory capability of engineered stem cells, we performed a modified trans-well assay. In addition, to identify their therapeutic efficacy, we co-cultured HB1.F3.CD or HB1.F3.CD.IFN-b with breast and endometrial cancer cells and cell viability was measured by MTT assay. The engineered stem cells expressed CD and IFN-b genes and several chemoattractant molecules, SCF, CXCR4, VEGF/VEGFR2 and c-kit, were strongly expressed in breast and endometrial cancer cells. These stem cells were effectively migrated to breast and endometrial cancer cells due to chemoattractant molecules secreted by breast and endometrial cancer cells. In therapeutic efficacy, the viability of breast and endometrial cancer cells treated with 5-FC was reduced in the presence of the HB1.F3.CD and HB1.F3.CD.IFN-b cells. Cell viability was more reduced when co-cultured with HB1.F3.CD.IFN-b compared with HB1.F3.CD cells. In conclusion, the results from the present study suggest that genetically modified stem cells expressing CD and IFN-b can be used as a gene-based therapy for treating breast and endometrial cancer via their tumour tropism. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0005723).


2019 ◽  
Author(s):  
P. Stephen Patrick ◽  
Krishna K. Kolluri ◽  
May Z. Thin ◽  
Adam Edwards ◽  
Elizabeth K. Sage ◽  
...  

AbstractPurposeMSCTRAIL is a new stem cell-based therapy for lung cancer, currently in phase I evaluation (ClinicalTrials.gov ref: NCT03298763). Biodistribution of cell therapies is rarely assessed in clinical trials, despite cell delivery to the target site often being critical to presumed mechanism of action. This preclinical study demonstrates that MSCTRAIL biodistribution dynamics can be detected non-invasively using 89Zr-oxine labelling and PET imaging, thus supporting use of this cell tracking technology in phase II evaluation.MethodsMSCTRAIL were radiolabelled with a range of 89Zr-oxine doses, and assayed for cell viability, phenotype and therapeutic efficacy post-labelling. Cell biodistribution was imaged in a mouse model of lung cancer using PET imaging and bioluminescence imaging (BLI) to confirm cell viability and location in vivo up to 1 week post-injection.ResultsMSCTRAIL retained therapeutic efficacy and MSC phenotype at doses up to and above those required for clinical imaging. The effect of 89Zr-oxine labelling on cell proliferation rate was dose and time-dependent. PET imaging showed delivery of MSCTRAIL to the lungs in a mouse model of lung cancer, with PET signal correlating with the presence of viable cells as assessed by bioluminescence imaging, ex vivo autoradiography and matched fluorescence imaging on lung tissue sections. Human dosimetry estimates were produced using simulations and preclinical biodistribution data.Conclusion89Zr-oxine labelling and PET imaging present an attractive method of evaluating the biodistribution of new cell-therapies, such as MSCTRAIL. This offers to improve understanding of mechanism of action, migration dynamics and interpatient variability of MSCTRAIL and other cell-based therapies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Soorya James ◽  
Kai Neuhaus ◽  
Mary Murphy ◽  
Martin Leahy

AbstractWith the advent of stem cell therapy for spinal cord injuries, stroke, burns, macular degeneration, heart diseases, diabetes, rheumatoid arthritis and osteoarthritis; the need to track the survival, migration pathways, spatial destination and differentiation of transplanted stem cells in a clinical setting has gained increased relevance. Indeed, getting regulatory approval to use these therapies in the clinic depends on biodistribution studies. Although optoacoustic imaging (OAI) or photoacoustic imaging can detect functional information of cell activities in real-time, the selection and application of suitable contrast agents is essential to achieve optimal sensitivity and contrast for sensing at clinically relevant depths and can even provide information about molecular activity. This review explores OAI methodologies in conjunction with the specific application of exogenous contrast agents in comparison to other imaging modalities and describes the properties of exogenous contrast agents for quantitative and qualitative monitoring of stem cells. Specific characteristics such as biocompatibility, the absorption coefficient, and surface functionalization are compared and how the labelling efficiency translates to both short and long-term visualization of mesenchymal stem cells is explored. An overview of novel properties of recently developed optoacoustic contrast agents and their capability to detect disease and recovery progression in clinical settings is provided which includes newly developed exogenous contrast agents to monitor stem cells in real-time for multimodal sensing.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Winston T Stauffer ◽  
Shirin Doroudgar ◽  
Haley N Stephens ◽  
Erik A Blackwood ◽  
Christopher C Glembotski

Recent studies have suggested that multipotent stem cells residing in the adult heart, called cardiac stem cells (CSCs), mitigate damage in the infarcted or failing heart. Investigating the factors governing CSC proliferation and differentiation is key to understanding what role these cells play in the heart and in future therapeutic strategies. Additionally, activating transcription factor 6 (ATF6), an effector of the endoplasmic reticulum (ER) unfolded protein response (UPR), plays critical roles in development, as well as in the differentiation of certain stem cell types, though it has not been studied in this regard in the heart. Our lab has demonstrated that ATF6 in cardiac myocytes is cardioprotective in vivo during ischemia/reperfusion partly by virtue of its ability to induce an antioxidant gene program that reduces damaging reactive oxygen species (ROS). However, ATF6, and its involvement in antioxidant gene induction, have not been studied in CSCs. Therefore, here we hypothesized that activation of the ATF6 branch of the UPR in CSCs is important for their proliferation and differentiation, given that ROS is known to be essential for these processes. To address this hypothesis, we subjected cultured mouse CSCs to simulated ischemia and observed increased ATF6 target gene mRNA levels. This demonstrates that, despite their undifferentiated status, CSCs have a functional UPR, which can be activated in response to ischemic stress. ATF6 loss of function (LOF) in CSCs, via RNAi or chemical inhibitor, yielded a basal decrease in cell viability and an increase in several differentiation markers, similar to the effect of dexamethasone differentiation stimulus. Increased ROS was also observed in an ATF6 LOF model. Strikingly, cotreatment with a chemical ROS inhibitor significantly rescued cell viability and reduced markers of differentiation in CSCs with reduced ATF6 function. These results suggest that CSCs require a basal level of ATF6 activity to maintain their proliferation and pluripotentcy in vitro and that this is mediated by the role of ATF6 in the mitigation of ROS. This is an important finding given that stem cell expansion in vitro is a critical step in the characterization of stem cells and their use in many therapeutic treatment strategies.


2020 ◽  
Vol 10 (11) ◽  
pp. 893
Author(s):  
Farah Amna Othman ◽  
Suat Cheng Tan

Transplantation of neural stem cells (NSCs) has been proposed as an alternative novel therapy to replace damaged neural circuitry after ischemic stroke onset. Nonetheless, albeit the potential of these cells for stroke therapy, many critical challenges are yet to be overcome to reach clinical applications. The major limitation of the NSC-based therapy is its inability to retain most of the donor stem cells after grafting into an ischemic brain area which is lacking of essential oxygen and nutrients for the survival of transplanted cells. Low cell survival rate limits the capacity of NSCs to repair the injured area and this poses a much more difficult challenge to the NSC-based therapy for ischemic stroke. In order to enhance the survival of transplanted cells, several stem cell culture preconditioning strategies have been employed. For ischemic diseases, hypoxic preconditioning is the most commonly applied strategy since the last few decades. Now, the preconditioning strategies have been developed and expanded enormously throughout years of efforts. This review systematically presented studies searched from PubMed, ScienceDirect, Web of Science, Scopus and the Google Scholar database up to 31 March 2020 based on search words containing the following terms: “precondition” or “pretreatment” and “neural stem cell” and “ischemic stroke”. The searched data comprehensively reported seven major NSC preconditioning strategies including hypoxic condition, small drug molecules such as minocycline, doxycycline, interleukin-6, adjudin, sodium butyrate and nicorandil, as well as electrical stimulation using conductive polymer for ischemic stroke treatment. We discussed therapeutic benefits gained from these preconditioned NSC for in vitro and in vivo stroke studies and the detailed insights of the mechanisms underlying these preconditioning approaches. Nonetheless, we noticed that there was a scarcity of evidence on the efficacy of these preconditioned NSCs in human clinical studies, therefore, it is still too early to draw a definitive conclusion on the efficacy and safety of this active compound for patient usage. Thus, we suggest for more in-depth clinical investigations of this cell-based therapy to develop into more conscientious and judicious evidence-based therapy for clinical application in the future.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Gabriella Teti ◽  
Stefano Focaroli ◽  
Viviana Salvatore ◽  
Eleonora Mazzotti ◽  
Laura Ingra’ ◽  
...  

Adult stem cells are a promising cell source for cartilage regeneration. They resided in a special microenvironment known as the stem-cell niche, characterized by the presence of low oxygen concentration. Cobalt chloride (CoCl2) imitates hypoxia in vitro by stabilizing hypoxia-inducible factor-alpha (HIF-1α), which is the master regulator in the cellular adaptive response to hypoxia. In this study, the influence of CoCl2 on the chondrogenic potential of human MSCs, isolated from dental pulp, umbilical cord, and adipose tissue, was investigated. Cells were treated with concentrations of CoCl2 ranging from 50 to 400 μM. Cell viability, HIF-1α protein synthesis, and the expression of the chondrogenic markers were analyzed. The results showed that the CoCl2 supplementation had no effect on cell viability, while the upregulation of chondrogenic markers such as SOX9, COL2A1, VCAN, and ACAN was dependent on the cellular source. This study shows that hypoxia, induced by CoCl2 treatment, can differently influence the behavior of MSCs, isolated from different sources, in their chondrogenic potential. These findings should be taken into consideration in the treatment of cartilage repair and regeneration based on stem cell therapies.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Manuel Pedro Jimenez-García ◽  
Antonio Lucena-Cacace ◽  
Daniel Otero-Albiol ◽  
Amancio Carnero

AbstractThe EMX (Empty Spiracles Homeobox) genes EMX1 and EMX2 are two homeodomain gene members of the EMX family of transcription factors involved in the regulation of various biological processes, such as cell proliferation, migration, and differentiation, during brain development and neural crest migration. They play a role in the specification of positional identity, the proliferation of neural stem cells, and the differentiation of certain neuronal cell phenotypes. In general, they act as transcription factors in early embryogenesis and neuroembryogenesis from metazoans to higher vertebrates. The EMX1 and EMX2’s potential as tumor suppressor genes has been suggested in some cancers. Our work showed that EMX1/EMX2 act as tumor suppressors in sarcomas by repressing the activity of stem cell regulatory genes (OCT4, SOX2, KLF4, MYC, NANOG, NES, and PROM1). EMX protein downregulation, therefore, induced the malignance and stemness of cells both in vitro and in vivo. In murine knockout (KO) models lacking Emx genes, 3MC-induced sarcomas were more aggressive and infiltrative, had a greater capacity for tumor self-renewal, and had higher stem cell gene expression and nestin expression than those in wild-type models. These results showing that EMX genes acted as stemness regulators were reproduced in different subtypes of sarcoma. Therefore, it is possible that the EMX genes could have a generalized behavior regulating proliferation of neural crest-derived progenitors. Together, these results indicate that the EMX1 and EMX2 genes negatively regulate these tumor-altering populations or cancer stem cells, acting as tumor suppressors in sarcoma.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1918
Author(s):  
Young-Bum Son ◽  
Yeon Ik Jeong ◽  
Yeon Woo Jeong ◽  
Mohammad Shamim Hossein ◽  
Per Olof Olsson ◽  
...  

Mesenchymal stem cells (MSCs) are promising multipotent cells with applications for cartilage tissue regeneration in stem cell-based therapies. In cartilage regeneration, both bone marrow (BM-MSCs) and synovial fluid (SF-MSCs) are valuable sources. However, the cellular characteristics and chondrocyte differentiation potential were not reported in either of the camel stem cells. The in vitro chondrocyte differentiation competence of MSCs, from (BM and SF) sources of the same Camelus dromedaries (camel) donor, was determined. Both MSCs were evaluated on pluripotent markers and proliferation capacity. After passage three, both MSCs showed fibroblast-like morphology. The proliferation capacity was significantly increased in SF-MSCs compared to BM-MSCs. Furthermore, SF-MSCs showed an enhanced expression of transcription factors than BM-MSCs. SF-MSCs exhibited lower differentiation potential toward adipocytes than BM-MSCs. However, the osteoblast differentiation potential was similar in MSCs from both sources. Chondrogenic pellets obtained from SF-MSCs revealed higher levels of chondrocyte-specific markers than those from BM-MSCs. Additionally, glycosaminoglycan (GAG) content was elevated in SF-MSCs related to BM-MSCs. This is, to our knowledge, the first study to establish BM-MSCs and SF-MSCs from the same donor and to demonstrate in vitro differentiation potential into chondrocytes in camels.


Sign in / Sign up

Export Citation Format

Share Document