Computation of Madalines' Sensitivity to Input and Weight Perturbations

2006 ◽  
Vol 18 (11) ◽  
pp. 2854-2877 ◽  
Author(s):  
Yingfeng Wang ◽  
Xiaoqin Zeng ◽  
Daniel So Yeung ◽  
Zhihang Peng

The sensitivity of a neural network's output to its input and weight perturbations is an important measure for evaluating the network's performance. In this letter, we propose an approach to quantify the sensitivity of Madalines. The sensitivity is defined as the probability of output deviation due to input and weight perturbations with respect to overall input patterns. Based on the structural characteristics of Madalines, a bottomup strategy is followed, along which the sensitivity of single neurons, that is, Adalines, is considered first and then the sensitivity of the entire Madaline network. Bymeans of probability theory, an analytical formula is derived for the calculation of Adalines' sensitivity, and an algorithm is designed for the computation of Madalines' sensitivity. Computer simulations are run to verify the effectiveness of the formula and algorithm. The simulation results are in good agreement with the theoretical results.

2010 ◽  
Vol 638-642 ◽  
pp. 2724-2729
Author(s):  
Yoshiyuki Saito ◽  
Chitoshi Masuda

Thermodynamic stability of Grain boundary in materials under severe plastic deformation was simulated by the Monte Carlo and the phase field methods. Computer simulations were performed on 3-dimensional textured materials. The Monte Carlo simulation results were qualitatively in good agreement with those by the phase field model. The classification of the solution of differential equations based on the mean-field Hillert model describing temporal evolution of the scaled grain size distribution function was in good agreement with those given by the Computer simulations. The ARB experiments were performed for pure Al and Al alloys-sheets in order to validate the computer simulation results concerning the grain boundary stability of textured materials. With use of the Monte Carlo and the phase field methods. Effect of grain boundary mobilises and interface energy given by the computer simulations.


2010 ◽  
Vol 19 (05) ◽  
pp. 1015-1024
Author(s):  
SİNEM ÖLMEZ ◽  
UĞUR ÇAM

In this paper, a Tow–Thomas biquadratic filter designed in square root domain is proposed. The presented filter is constructed with a lossy integrator, a lossless integrator, and a summer block. To the best knowledge of the authors, the filter is the first square root domain Tow–Thomas filter in the literature. The state space synthesis method is used to design the biquadratic filter. The filter operated at 2.5 V supply voltage is simulated by using SPICE simulation program with 0.25 μm TSMC CMOS model parameters. Simulation results are in good agreement with theoretical results that the cut-off frequency and quality factor of the filter are tunable electronically.


2016 ◽  
Vol 31 (2) ◽  
pp. 142-149 ◽  
Author(s):  
Alireza Vejdani-Noghreiyan ◽  
Elham Aliakbari ◽  
Atiyeh Ebrahimi-Khankook ◽  
Mahdi Ghasemifard

Mass attenuation coefficient of lead-based ceramics have been measured by experimental methods and compared with theoretical and Monte Carlo simulation results. Lead-based ceramics were prepared using mixed oxide method and the X-ray diffraction analysis was done to evaluate the crystal structure of the produced handmade ceramics. The experimental results show good agreement with theoretical and simulation results. However at two gamma ray energies, small differences between experimental and theoretical results have been observed. By adding other additives to ceramics and observing the changes in the shielding properties such as flexibility, one can synthesize and optimize ceramics as a neutron shield.


1987 ◽  
Vol 109 (2) ◽  
pp. 100-105 ◽  
Author(s):  
M. Shiraishi

A modified reflection theory based on Beckmann and Spizzichino is described which evaluates the surface roughness in connection with Rmax roughness value. Computer simulations due to this theory are relatively in good agreement with the experiments. Further, the simulation results suggest that the reflection characteristics can be freely changed to some extent by varying the incidence and acceptance angles of light. Also, the proposed measuring system is easily applicable to the real-time detection of turned surfaces without affecting its working accuracy.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-34
Author(s):  
Mingjing Du ◽  
Pengfei Ning ◽  
Yulan Wang

Although many kinds of numerical methods have been announced for the predator-prey system, simple and efficient methods have always been the direction that scholars strive to pursue. Based on this problem, in this paper, a new interpolation collocation method is proposed for a class of predator-prey systems with complex dynamics characters. Some complex dynamics characters and pattern formations are shown by using this new approach, and the results have a good agreement with theoretical results. Simulation results show the effectiveness of the method.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


2020 ◽  
pp. 131-138

The nonlinear optical properties of pepper oil are studied by diffraction ring patterns and Z-scan techniques with continuous wave beam from solid state laser at 473 nm wavelength. The nonlinear refractive index of the sample is calculated by both techniques. The sample show high nonlinear refractive index. Based on Fresnel-Kirchhoff diffraction integral, the far-field intensity distributions of ring patterns have been calculated. It is found that the experimental results are in good agreement with the theoretical results. Also the optical limiting property of pepper oil is reported. The results obtained in this study prove that the pepper oil has applications in nonlinear optical devices.


Author(s):  
Paul Humphreys

Paul Humphreys pioneered philosophical investigations into the methodological revolution begun by computer simulations. He has also made important contributions to the contemporary literature on emergence by developing the fusion account of diachronic emergence and its generalization, transformational emergence. He is the discoverer of what has come to be called “Humphreys” Paradox in probability theory and has also made influential contributions to the literature on probabilistic causality and scientific explanation. This collection contains fourteen of his previously published papers on topics ranging from numerical experiments to the status of scientific metaphysics. There is also and a previously unpublished paper on social dynamics. The volume is divided into four parts on, respectively, computational science, emergence, probability, and general philosophy of science. The first part contains the seminal 1990 paper on computer simulations, with three other papers arguing that these new methods cannot be accounted for by traditional methodological approaches. The second part contains the original presentation of fusion emergence and three companion papers arguing for diachronic approaches to the topic, rather than the then dominant synchronic accounts. The third part starts with the paper that introduced the probabilistic paradox followed by a later evaluation of attempts to solve it. A third paper argues, contra Quine, that probability theory is a purely mathematical theory. The final part includes papers on causation, explanation, metaphysics, and an agent-based model that shows how endogenous uncertainty undermines utility maximization. Each of the four parts is followed by a comprehensive postscript with retrospective assessments.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xichuan Liu ◽  
Taichang Gao ◽  
Yuntao Hu ◽  
Xiaojian Shu

In order to improve the measurement of precipitation microphysical characteristics sensor (PMCS), the sampling process of raindrops by PMCS based on a particle-by-particle Monte-Carlo model was simulated to discuss the effect of different bin sizes on DSD measurement, and the optimum sampling bin sizes for PMCS were proposed based on the simulation results. The simulation results of five sampling schemes of bin sizes in four rain-rate categories show that the raw capture DSD has a significant fluctuation variation influenced by the capture probability, whereas the appropriate sampling bin size and width can reduce the impact of variation of raindrop number on DSD shape. A field measurement of a PMCS, an OTT PARSIVEL disdrometer, and a tipping bucket rain Gauge shows that the rain-rate and rainfall accumulations have good consistencies between PMCS, OTT, and Gauge; the DSD obtained by PMCS and OTT has a good agreement; the probability of N0, μ, and Λ shows that there is a good agreement between the Gamma parameters of PMCS and OTT; the fitted μ-Λ and Z-R relationship measured by PMCS is close to that measured by OTT, which validates the performance of PMCS on rain-rate, rainfall accumulation, and DSD related parameters.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 979
Author(s):  
Sandeep Kumar ◽  
Rajesh K. Pandey ◽  
H. M. Srivastava ◽  
G. N. Singh

In this paper, we present a convergent collocation method with which to find the numerical solution of a generalized fractional integro-differential equation (GFIDE). The presented approach is based on the collocation method using Jacobi poly-fractonomials. The GFIDE is defined in terms of the B-operator introduced recently, and it reduces to Caputo fractional derivative and other fractional derivatives in special cases. The convergence and error analysis of the proposed method are also established. Linear and nonlinear cases of the considered GFIDEs are numerically solved and simulation results are presented to validate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document