Predicting the Existence and Stability of Phase-Locked Mode in Neural Networks Using Generalized Phase-Resetting Curve

2017 ◽  
Vol 29 (8) ◽  
pp. 2030-2054
Author(s):  
Sorinel A. Oprisan

We used the phase-resetting method to study a biologically relevant three-neuron network in which one neuron receives multiple inputs per cycle. For this purpose, we first generalized the concept of phase resetting to accommodate multiple inputs per cycle. We explicitly showed how analytical conditions for the existence and the stability of phase-locked modes are derived. In particular, we solved newly derived recursive maps using as an example a biologically relevant driving-driven neural network with a dynamic feedback loop. We applied the generalized phase-resetting definition to predict the relative-phase and the stability of a phase-locked mode in open loop setup. We also compared the predicted phase-locked mode against numerical simulations of the fully connected network.

1987 ◽  
Vol 31 (6) ◽  
pp. 648-651 ◽  
Author(s):  
James G. Connelly ◽  
Christopher D. Wickens ◽  
Gavan Lintern ◽  
Kelly Harwood

This study used elements of attention theory as a methodological basis to decompose a complex training task in order to improve training efficiency. The complex task was a microcomputer flight simulation where subjects were required to control the stability of their own helicopter while acquiring and engaging enemy helicopters in a threat environment. Subjects were divided into whole-task, part-task, and part/open loop adaptive task groups in a transfer of training paradigm. The effect of reducing mental workload at the early stages of learning was examined with respect to the degree that subordinate elements of the complex task could be automated through practice of consistent, learnable stimulus-response relationships. Results revealed trends suggesting the benefit of isolating consistently mapped sub-tasks for part-task training and the presence of a time-sharing skill over and above the skill required for the separate subtasks.


2010 ◽  
Vol 121-122 ◽  
pp. 860-865
Author(s):  
Xue Zhen Chen

This paper searched open loop stability on hybrid synchronous motor which is made of a permanent magnet part and a reluctance part, there is important influence for the ratio k, the fraction length of the permanent magnet part, and the displaced angle α, the between the two part d-axis, the small-signal mathematics model was derived based on d-q reference frame, and optimized the appropriate k and α value considering the stability and the harmonic distortion factor (THD), The simulation results show that the model is correct.


1998 ◽  
Vol 35 (1) ◽  
pp. 47-70
Author(s):  
Jack Willis

At high frequencies the complexity of the circuit representing a feedback amplifier is such that the concept of a feedback loop becomes meaningless, and an alternative means of checking the stability of the amplifier is needed. Representing the network as a two-port realises such a solution.


2018 ◽  
Vol 33 (36) ◽  
pp. 1850216 ◽  
Author(s):  
M. Sharif ◽  
Arfa Waseem

This paper investigates the existence and stability of Einstein universe in the context of f(R, T, Q) gravity, where Q = R[Formula: see text] T[Formula: see text]. Considering linear homogeneous perturbations around scale factor and energy density, we formulate static as well as perturbed field equations. We parametrize the stability regions corresponding to conserved as well as non-conserved energy–momentum tensor using linear equation of state parameter for particular models of this gravity. The graphical analysis concludes that for a suitable choice of parameters, stable regions of the Einstein universe are obtained which indicates that the big bang singularity can be avoided successfully by the emergent mechanism in non-minimal matter-curvature coupled gravity.


2010 ◽  
Vol 3 (9) ◽  
pp. 262-262
Author(s):  
A. D Wilson ◽  
G. P Bingham ◽  
D. R Collins

Author(s):  
Nir Ben Shaya ◽  
Izhak Bucher ◽  
Amit Dolev

AbstractDescribed is a closed-loop control scheme capable of stabilizing a parametrically excited nonlinear structure in several vibration modes. By setting the relative phase between the spatially filtered response and the excitation, the open-loop unstable solution branches are stabilized under a 2:1 parametric excitation of a chosen mode of vibration. For a given phase, the closed-loop automatically locks on a limit cycle, through an Autoresonance scheme, at any desired point on the solution branches. Axially driven slender beams and nanowires develop large transverse vibration under suitable amplitudes and frequency base-excitation that are sensitive to small potential coupled field. To utilize such a structure as a sensor, stable and robust operation are made possible by the control scheme. In addition, an optimal operating point with large sensitivity to the sensed potential field can be set using phase as a tunable parameter. Detailed analysis of the dynamical behavior, experimental verifications, and demonstrations sheds light on some features of the system dynamics.


Author(s):  
Erika Camacho ◽  
Richard Rand ◽  
Howard Howland

In this work we study a system of two van der Pol oscillators, x and y, coupled via a “bath” z: x¨−ε(1−x2)x˙+x=k(z−x)y¨−ε(1−y2)y˙+y=k(z−y)z˙=k(x−z)+k(y−z) We investigate the existence and stability of the in-phase and out-of-phase modes for parameters ε > 0 and k > 0. To this end we use Floquet theory and numerical integration. Surprisingly, our results show that the out-of-phase mode exists and is stable for a wider range of parameters than is the in-phase mode. This behavior is compared to that of two directly coupled van der Pol oscillators, and it is shown that the effect of the bath is to reduce the stability of the in-phase mode. We also investigate the occurrence of other periodic motions by using bifurcation theory and the AUTO bifurcation and continuation software package. Our motivation for studying this system comes from the presence of circadian rhythms in the chemistry of the eyes. We present a simplified model of a circadian oscillator which shows that it can be modeled as a van der Pol oscillator. Although there is no direct connection between the two eyes, they can influence each other by affecting the concentration of melatonin in the bloodstream, which is represented by the bath in our model.


Author(s):  
Shinya Aoi

Recently, interest in the study of legged robots has increased, and various gait patterns of the robots have been established. However, unlike humans and animals, these robots still have difficulties in achieving adaptive locomotion, and a huge gap remains between them. This chapter deals with the gait transition of a biped robot from quadrupedal to bipedal locomotion. This gait transition requires drastic changes in the robot posture and the reduction of the number of supporting limbs, so the stability greatly changes during the transition. A locomotion control system is designed to achieve the gait transition based on the physiological concepts of central pattern generator, phase resetting, and kinematic synergy, and the usefulness of this control system is verified by the robot experiment.


Sign in / Sign up

Export Citation Format

Share Document