Effect of Frame Rate and Force Feedback on Virtual Object Manipulation

1996 ◽  
Vol 5 (1) ◽  
pp. 95-108 ◽  
Author(s):  
Paul Richard ◽  
Georges Birebent ◽  
Philippe Coiffet ◽  
Grigore Burdea ◽  
Daniel Gomez ◽  
...  

Research on virtual environments (VE) produced significant advances in computer hardware (graphics boards and i/o tools) and software (real-time distributed simulations). However, fundamental questions remain about how user performance is affected by such factors as graphics refresh rate, resolution, control latencies, and multimodal feedback. This article reports on two experiments performed to examine dextrous manipulation of virtual objects. The first experiment studies the effect of graphics frame rate and viewing mode (monoscopic vs. stereoscopic) on the time required to grasp a moving target. The second experiment studies the effect of direct force feedback, pseudoforce feedback, and redundant force feedback on grasping force regulation. The trials were performed using a partially-immersive environment (graphics workstation and LCD glasses), a DataGlove, and the Rutgers Master with force feedback. Results of the first experiment indicate that stereoscopic viewing is beneficial for low refresh rates (it reduced task completion time by about 50% vs. monoscopic graphics). Results of the second experiment indicate that haptic feedback increases performance and reduces error rates, as compared to the open loop case (with no force feedback). The best performance was obtained when both direct haptic and redundant auditory feedback were provided to the user. The large number of subjects participating in these experiments (over 160 male and female) indicates good statistical significance for the above results.

2012 ◽  
Vol 21 (4) ◽  
pp. 435-451 ◽  
Author(s):  
Laura Santos-Carreras ◽  
Kaspar Leuenberger ◽  
Evren Samur ◽  
Roger Gassert ◽  
Hannes Bleuler

Robotic surgery provides many benefits such as reduced invasiveness and increased dexterity. This comes at the cost of no direct contact between surgeon and patient. This physical separation prevents surgeons from performing direct haptic exploration of tissues and organs, imposing exclusive reliance on visual cues. Current technology is not yet able to both measure and reproduce a realistic and complete sense of touch (interaction force, temperature, roughness, etc.). In this paper, we put forward a concept based on multimodal feedback consisting of the integration of different kinds of visual and tactile cues with force feedback that can potentially improve both the surgeon's performance and the patient's safety. We present a cost-effective tactile display simulating a pulsating artery that has been integrated into a haptic workstation to combine both tactile and force-feedback information. Furthermore, we investigate the effect of different feedback types, including tactile and/or visual cues, on the performance of subjects carrying out two typical palpation tasks: (1) exploring a tissue to find a hidden artery and (2) identifying the orientation of a hidden artery. The results show that adding tactile feedback significantly reduces task completion time. Moreover, for high difficulty levels, subjects perform better with the feedback condition combining tactile and visual cues. As a matter of fact, the majority of the subjects in the study preferred this combined feedback because redundant feedback reassures subjects in their actions. Based on this work, we can infer that multimodal haptic feedback improves subjects' performance and confidence during exploratory procedures.


2010 ◽  
Vol 19 (5) ◽  
pp. 415-429 ◽  
Author(s):  
Marwan Radi ◽  
Verena Nitsch

In contrast to automated production, human intelligence is deemed necessary for successful execution of assembly tasks that are difficult or expensive to automate in small and medium lots. However, human ability is hindered in some cases by physical barriers such as miniaturization or in contrast, very heavy components. Telepresence technology can be considered a solution for performing a wide variety of assembly tasks where human intelligence and haptic sense are needed. This work highlights several issues involved in deploying industrial telepresence systems to manipulate and assemble microparts as well as heavy objects. Two sets of experiments are conducted to investigate telepresence related aspects in an industrial setting. The first experiment evaluates the usefulness of haptic feedback for a human operator in a standard pick-and-place task. Three operation modes were considered: visual feedback, force feedback, and force assistance (realized as vibration). In the second experiment, two different guidance strategies for the teleoperator were tested. The comparison between a position and a velocity scheme in terms of task completion time and subjective preferences is presented.


Author(s):  
Silvio H. Rizzi ◽  
Cristian J. Luciano ◽  
P. Pat Banerjee

Combinations of graphics and haptics libraries are used in medical simulations for simultaneous visualization and tactile interaction with complex 3D anatomy models. The minimum frame rate of 1 kHz for haptics rendering makes it a nontrivial problem when dealing with complex and highly detailed polygonal models. Multiple haptics algorithms based on polygonal mesh rendering, volume haptics, and intermediate representation are evaluated in terms of their servoloop rendering time, client thread rendering time, and quality of force feedback. Algorithms include OpenHaptics’ Feedback Buffer and Depth Buffer, GodObject and Ruspini renderers in h3d, chai3d implementation in h3d, ScalarSurfaceFriction mode in Volume Haptics ToolKit (vhtk), and the authors’ intermediate representation algorithm based on volumetric data. The latter, in combination with surface graphics visualization, is found to deliver the best rendering time, to detect all collisions and to provide correct haptic feedback where other algorithms fail.


Author(s):  
Göran A. V. Christiansson

Haptic feedback is known to improve teleoperation task performance for a number of tasks, and one important question is which haptic cues are the most important for each specific task. This research quantifies human performance in an assembly task for two types of haptic cues: low-frequency (LF) force feedback and high-frequency (HF) force feedback. A human subjects study was performed with those two main factors: LF force feedback on/off and HF force (acceleration) feedback on/off. All experiments were performed using a three degree-of-freedom teleoperator where the slave device has a low intrinsic stiffness, while the master device on the other hand is stiff. The results show that the LF haptic feedback reduces impact forces, but does not influence low-frequency contact forces or task completion time. The HF information did not improve task performance, but did reduce the mental load of the teleoperator, but only in combination with the LF feedback.


Author(s):  
Abhishek Gupta ◽  
Marcia K. O’Malley ◽  
Volkan Patoglu

Most commonly used impedance-type haptic interfaces employ open-loop force control under the assumption of pseudostatic interactions. Advanced force control in such interfaces can increase simulation fidelity through improvement of the transparency of the device, and can further improve robustness. However, closed loop force-feedback is limited both due to the bandwidth limitations of force sensing and the associated cost of force sensors required for its implementation. In this paper, we propose the use of a nonlinear disturbance observer for estimation of contact forces during haptic interactions. This approach circumvents the traditional drawbacks of force sensing while exhibiting the advantages of closed-loop force control in haptic devices. The feedback of contact force information further enables implementation of advanced robot force control techniques such as robust hybrid impedance and admittance control. Simulation and experimental results, utilizing a PHANToM Premium 1.0A haptic interface, are presented to demonstrate the efficacy of the proposed approach.


2021 ◽  
Vol 12 ◽  
Author(s):  
Takahiro Kawabe ◽  
Yusuke Ujitoko ◽  
Takumi Yokosaka ◽  
Scinob Kuroki

Haptic sensation of a material can be modulated by its visual appearance. A technique that utilizes this visual-haptic interaction is called as pseudo-haptic feedback. Conventional studies have investigated pseudo-haptic feedback in situations, wherein a user manipulated a virtual object using a computer mouse, a force-feedback device, etc. The present study investigated whether and how it was possible to offer pseudo-haptic feedback to a user who manipulated a virtual object using keystrokes. Participants moved a cursor toward a destination by pressing a key. While the cursor was moving, the cursor was temporarily slowed down on a square area of the screen. The participants’ task was to report, on a five-point scale, how much resistance they felt to the cursor’s movement. In addition to the basic speed of the cursor, the ratio of the basic speed to the speed within the square area was varied. In Experiment 1, we found that these two factors interacted significantly with each other, but further analysis showed that the cursor speed within the square area was the most important determinant of perceived resistance. In Experiment 2, consistent with the results of the previous experiment, it was found that the cursor movement outside of the square area was not required to generate the sense of resistance. Counterintuitively, in Experiment 3, the sense of resistance was apparent even without user’s keystrokes. We discuss how the sense of resistance for a cursor moved by keystrokes can be triggered visually, but interpreted by the brain as a haptic impression.


2021 ◽  
Author(s):  
Takahiro Kawabe ◽  
Yusuke Ujitoko ◽  
Takumi Yokosaka ◽  
Scinob Kuroki

Haptic sensation of a material can be modulated by its visual appearance. A technique that utilizes this visual-haptic interaction is called pseudo-haptic feedback. Conventional studies have investigated pseudo-haptic feedback in situations wherein a user manipulated a virtual object using a computer mouse, a force-feedback device, etc. The present study investigated whether and how it was possible to offer pseudo-haptic feedback to a user who manipulated a virtual object using keystrokes. Participants moved a cursor toward a destination by pressing a key. While the cursor was moving, the cursor was temporarily slowed down on a square area of the screen. The participants' task was to report, on a 5-point scale, how much resistance they felt to the cursor's movement. In addition to the basic speed of the cursor, the ratio of the basic speed to the speed within the square area was varied. In Experiment 1, we found that these two factors interacted significantly with each other, but further analysis showed that the cursor speed within the square area was the most important determinant of perceived resistance. In Experiment 2, consistent with the results of the previous experiment, it was found that the cursor movement outside of the square area was not required to generate the sense of resistance. Counterintuitively, in Experiment 3, the sense of resistance was apparent even without user's keystrokes. We discuss how the sense of resistance for a cursor moved by keystrokes can be triggered visually, but interpreted by the brain as a haptic impression.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3673
Author(s):  
Stefan Grushko ◽  
Aleš Vysocký ◽  
Petr Oščádal ◽  
Michal Vocetka ◽  
Petr Novák ◽  
...  

In a collaborative scenario, the communication between humans and robots is a fundamental aspect to achieve good efficiency and ergonomics in the task execution. A lot of research has been made related to enabling a robot system to understand and predict human behaviour, allowing the robot to adapt its motion to avoid collisions with human workers. Assuming the production task has a high degree of variability, the robot’s movements can be difficult to predict, leading to a feeling of anxiety in the worker when the robot changes its trajectory and approaches since the worker has no information about the planned movement of the robot. Additionally, without information about the robot’s movement, the human worker cannot effectively plan own activity without forcing the robot to constantly replan its movement. We propose a novel approach to communicating the robot’s intentions to a human worker. The improvement to the collaboration is presented by introducing haptic feedback devices, whose task is to notify the human worker about the currently planned robot’s trajectory and changes in its status. In order to verify the effectiveness of the developed human-machine interface in the conditions of a shared collaborative workspace, a user study was designed and conducted among 16 participants, whose objective was to accurately recognise the goal position of the robot during its movement. Data collected during the experiment included both objective and subjective parameters. Statistically significant results of the experiment indicated that all the participants could improve their task completion time by over 45% and generally were more subjectively satisfied when completing the task with equipped haptic feedback devices. The results also suggest the usefulness of the developed notification system since it improved users’ awareness about the motion plan of the robot.


Author(s):  
Bao Tri Diep ◽  
Quoc Hung Nguyen ◽  
Thanh Danh Le

The purpose of this paper is to design a control algorithm for a 2-DoF rotary joystick model. Firstly, the structure of the joystick, which composes of two magneto-rheological fluid actuators (shorten MRFA) with optimal configuration coupled perpendicularly by the gimbal mechanism to generate the friction torque for each independent rotary movement, is introduced. The control strategy of the designed joystick is then suggested. Really, because of two independent rotary movements, it is necessary to design two corresponding controllers. Due to hysteresis and nonlinear dynamic characteristics of the MRFA, controllers based an accurate dynamic model are difficult to realize. Hence, to release this issue, the proposed controller (named self-turning fuzzy controllers-STFC) will be built through the fuzzy logic algorithm in which the parameters of controllers are learned and trained online by Levenberg-Marquardt training algorithm. Finally, an experimental apparatus will be constructed to assess the effectiveness of the force feedback controls. Herein, three experimental cases are performed to compare the control performance of open-loop and close-loop control method, where the former is done through relationship between the force at the knob and the current supplied to coil while the latter is realized based on the proposed controller and PID controller. The experimental results provide strongly the ability of the proposed controller, meaning that the STFC is robust and tracks well the desirable force with high accuracy compared with both the PID controller and the open-loop control method.


2000 ◽  
Author(s):  
Michael L. Turner ◽  
Ryan P. Findley ◽  
Weston B. Griffin ◽  
Mark R. Cutkosky ◽  
Daniel H. Gomez

Abstract This paper describes the development of a system for dexterous telemanipulation and presents the results of tests involving simple manipulation tasks. The user wears an instrumented glove augmented with an arm-grounded haptic feedback apparatus. A linkage attached to the user’s wrist measures gross motions of the arm. The movements of the user are transferred to a two fingered dexterous robot hand mounted on the end of a 4-DOF industrial robot arm. Forces measured at the robot fingers can be transmitted back to the user via the haptic feedback apparatus. The results obtained in block-stacking and object-rolling experiments indicate that the addition of force feedback to the user did not improve the speed of task execution. In fact, in some cases the presence of incomplete force information is detrimental to performance speed compared to no force information. There are indications that the presence of force feedback did aid in task learning.


Sign in / Sign up

Export Citation Format

Share Document