Tactile Feedback Improves Performance in a Palpation Task: Results in a VR-Based Testbed

2012 ◽  
Vol 21 (4) ◽  
pp. 435-451 ◽  
Author(s):  
Laura Santos-Carreras ◽  
Kaspar Leuenberger ◽  
Evren Samur ◽  
Roger Gassert ◽  
Hannes Bleuler

Robotic surgery provides many benefits such as reduced invasiveness and increased dexterity. This comes at the cost of no direct contact between surgeon and patient. This physical separation prevents surgeons from performing direct haptic exploration of tissues and organs, imposing exclusive reliance on visual cues. Current technology is not yet able to both measure and reproduce a realistic and complete sense of touch (interaction force, temperature, roughness, etc.). In this paper, we put forward a concept based on multimodal feedback consisting of the integration of different kinds of visual and tactile cues with force feedback that can potentially improve both the surgeon's performance and the patient's safety. We present a cost-effective tactile display simulating a pulsating artery that has been integrated into a haptic workstation to combine both tactile and force-feedback information. Furthermore, we investigate the effect of different feedback types, including tactile and/or visual cues, on the performance of subjects carrying out two typical palpation tasks: (1) exploring a tissue to find a hidden artery and (2) identifying the orientation of a hidden artery. The results show that adding tactile feedback significantly reduces task completion time. Moreover, for high difficulty levels, subjects perform better with the feedback condition combining tactile and visual cues. As a matter of fact, the majority of the subjects in the study preferred this combined feedback because redundant feedback reassures subjects in their actions. Based on this work, we can infer that multimodal haptic feedback improves subjects' performance and confidence during exploratory procedures.

1996 ◽  
Vol 5 (1) ◽  
pp. 95-108 ◽  
Author(s):  
Paul Richard ◽  
Georges Birebent ◽  
Philippe Coiffet ◽  
Grigore Burdea ◽  
Daniel Gomez ◽  
...  

Research on virtual environments (VE) produced significant advances in computer hardware (graphics boards and i/o tools) and software (real-time distributed simulations). However, fundamental questions remain about how user performance is affected by such factors as graphics refresh rate, resolution, control latencies, and multimodal feedback. This article reports on two experiments performed to examine dextrous manipulation of virtual objects. The first experiment studies the effect of graphics frame rate and viewing mode (monoscopic vs. stereoscopic) on the time required to grasp a moving target. The second experiment studies the effect of direct force feedback, pseudoforce feedback, and redundant force feedback on grasping force regulation. The trials were performed using a partially-immersive environment (graphics workstation and LCD glasses), a DataGlove, and the Rutgers Master with force feedback. Results of the first experiment indicate that stereoscopic viewing is beneficial for low refresh rates (it reduced task completion time by about 50% vs. monoscopic graphics). Results of the second experiment indicate that haptic feedback increases performance and reduces error rates, as compared to the open loop case (with no force feedback). The best performance was obtained when both direct haptic and redundant auditory feedback were provided to the user. The large number of subjects participating in these experiments (over 160 male and female) indicates good statistical significance for the above results.


2008 ◽  
Vol 2008 ◽  
pp. 1-11 ◽  
Author(s):  
Ki-Uk Kyung ◽  
Jun-Young Lee ◽  
Junseok Park

This paper presents a haptic stylus interface with a built-in compact tactile display module and an impact module as well as empirical studies on Braille, button, and texture display. We describe preliminary evaluations verifying the tactile display's performance indicating that it can satisfactorily represent Braille numbers for both the normal and the blind. In order to prove haptic feedback capability of the stylus, an experiment providing impact feedback mimicking the click of a button has been conducted. Since the developed device is small enough to be attached to a force feedback device, its applicability to combined force and tactile feedback display in a pen-held haptic device is also investigated. The handle of pen-held haptic interface was replaced by the pen-like interface to add tactile feedback capability to the device. Since the system provides combination of force, tactile and impact feedback, three haptic representation methods for texture display have been compared on surface with 3 texture groups which differ in direction, groove width, and shape. In addition, we evaluate its capacity to support touch screen operations by providing tactile sensations when a user rubs against an image displayed on a monitor.


Robotica ◽  
2002 ◽  
Vol 20 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Vicente Mut ◽  
José Postigo ◽  
Emanuel Slawiñski ◽  
Benjamin Kuchen

A control structure for the bilateral teleoperation of mobile robots, with tactile feedback and visual information of the interaction force is proposed in this paper. Also an impedance controller is implemented in the mobile robot structure that guarantees the linear velocity be within a desired fixed range without saturation in the actuators. To illustrate the performance of the proposed control structure, experiments on a Pioneer 2 mobile robot teleoperated with a commercial joystick with force feedback are shown.


2010 ◽  
Vol 19 (5) ◽  
pp. 415-429 ◽  
Author(s):  
Marwan Radi ◽  
Verena Nitsch

In contrast to automated production, human intelligence is deemed necessary for successful execution of assembly tasks that are difficult or expensive to automate in small and medium lots. However, human ability is hindered in some cases by physical barriers such as miniaturization or in contrast, very heavy components. Telepresence technology can be considered a solution for performing a wide variety of assembly tasks where human intelligence and haptic sense are needed. This work highlights several issues involved in deploying industrial telepresence systems to manipulate and assemble microparts as well as heavy objects. Two sets of experiments are conducted to investigate telepresence related aspects in an industrial setting. The first experiment evaluates the usefulness of haptic feedback for a human operator in a standard pick-and-place task. Three operation modes were considered: visual feedback, force feedback, and force assistance (realized as vibration). In the second experiment, two different guidance strategies for the teleoperator were tested. The comparison between a position and a velocity scheme in terms of task completion time and subjective preferences is presented.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gyuwon Kim ◽  
Donghyun Hwang ◽  
Jaeyoung Park

AbstractAs touch screen technologies advanced, a digital stylus has become one of the essential accessories for a smart device. However, most of the digital styluses so far provide limited tactile feedback to a user. Therefore we focused on the limitation and noted the potential that a digital stylus may offer the sensation of realistic interaction with virtual environments on a touch screen using a 2.5D haptic system. Thus, we developed a haptic stylus with SMA (Shape Memory Alloy) and a 2.5D haptic rendering algorithm to provide lateral skin-stretch feedback to mimic the interaction force between fingertip and a stylus probing over a bumpy surface. We conducted two psychophysical experiments to evaluate the effect of 2.5D haptic feedback on the perception of virtual object geometry. Experiment 1 investigated the human perception of virtual bump size felt via the proposed lateral skin-stretch stylus and a vibrotactile stylus as reference. Experiment 2 tested the participants’ ability to count the number of virtual bumps rendered via the two types of haptic styluses. The results of Experiment 1 indicate that the participants felt the size of virtual bumps rendered with lateral skin-stretch stylus significantly sensitively than the vibrotactile stylus. Similarly, the participants counted the number of virtual bumps rendered with the lateral skin-stretch stylus significantly better than with the vibrotactile stylus. A common result of the two experiments is a significantly longer mean trial time for the skin-stretch stylus than the vibrotactile stylus.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4780
Author(s):  
Oliver Ozioko ◽  
William Navaraj ◽  
Marion Hersh ◽  
Ravinder Dahiya

This paper presents a dual-function wearable device (Tacsac) with capacitive tactile sensing and integrated tactile feedback capability to enable communication among deafblind people. Tacsac has a skin contactor which enhances localized vibrotactile stimulation of the skin as a means of feedback to the user. It comprises two main modules—the touch-sensing module and the vibrotactile module; both stacked and integrated as a single device. The vibrotactile module is an electromagnetic actuator that employs a flexible coil and a permanent magnet assembled in soft poly (dimethylsiloxane) (PDMS), while the touch-sensing module is a planar capacitive metal-insulator-metal (MIM) structure. The flexible coil was fabricated on a 50 µm polyimide (PI) sheet using Lithographie Galvanoformung Abformung (LIGA) micromoulding technique. The Tacsac device has been tested for independent sensing and actuation as well as dual sensing-actuation mode. The measured vibration profiles of the actuator showed a synchronous response to external stimulus for a wide range of frequencies (10 Hz to 200 Hz) within the perceivable tactile frequency thresholds of the human hand. The resonance vibration frequency of the actuator is in the range of 60–70 Hz with an observed maximum off-plane displacement of 0.377 mm at coil current of 180 mA. The capacitive touch-sensitive layer was able to respond to touch with minimal noise both when actuator vibration is ON and OFF. A mobile application was also developed to demonstrate the application of Tacsac for communication between deafblind person wearing the device and a mobile phone user who is not deafblind. This advances existing tactile displays by providing efficient two-way communication through the use of a single device for both localized haptic feedback and touch-sensing.


Author(s):  
Göran A. V. Christiansson

Haptic feedback is known to improve teleoperation task performance for a number of tasks, and one important question is which haptic cues are the most important for each specific task. This research quantifies human performance in an assembly task for two types of haptic cues: low-frequency (LF) force feedback and high-frequency (HF) force feedback. A human subjects study was performed with those two main factors: LF force feedback on/off and HF force (acceleration) feedback on/off. All experiments were performed using a three degree-of-freedom teleoperator where the slave device has a low intrinsic stiffness, while the master device on the other hand is stiff. The results show that the LF haptic feedback reduces impact forces, but does not influence low-frequency contact forces or task completion time. The HF information did not improve task performance, but did reduce the mental load of the teleoperator, but only in combination with the LF feedback.


2010 ◽  
Vol 19 (5) ◽  
pp. 400-414 ◽  
Author(s):  
Andreas Tobergte

This paper presents MiroSurge, a telepresence system for minimally invasive surgery developed at the German Aerospace Center (DLR), and introduces MiroSurge's new user interaction modalities: (1) haptic feedback with software-based preservation of the fulcrum point, (2) an ultrasound-based approach to the quasi-tactile detection of pulsating vessels, and (3) a contact-free interface between surgeon and telesurgery system, where stereo vision is augmented with force vectors at the tool tip. All interaction modalities aim to increase the user's perception beyond stereo imaging by either augmenting the images or by using haptic interfaces. MiroSurge currently provides surgeons with two different interfaces. The first option, bimanual haptic interaction with force and partial tactile feedback, allows for direct perception of the remote environment. Alternatively, users can choose to control the surgical instruments by optically tracked forceps held in their hands. Force feedback is then provided in augmented stereo images by constantly updated force vectors displayed at the centers of the teleoperated instruments, regardless of the instruments' position within the video image. To determine the centerpoints of the instruments, artificial markers are attached and optically tracked. A new approach to detecting pulsating vessels beneath covering tissue with an omnidirectional ultrasound Doppler sensor is presented. The measurement results are computed and can be provided acoustically (by displaying the typical Doppler sound), optically (by augmenting the endoscopic video stream), or kinesthetically (by a gentle twitching of the haptic input devices). The control structure preserves the fulcrum point in minimally invasive surgery and user commands are followed by the surgical instrument. Haptic feedback allows the user to distinguish between interaction with soft and hard environments. The paper includes technical evaluations of the features presented, as well as an overview of the system integration of MiroSurge.


2002 ◽  
Vol 01 (01) ◽  
pp. 107-112 ◽  
Author(s):  
MARKUS MERSINGER ◽  
ENGELBERT WESTKÄMPER

Virtual Reality (VR) made its way out of research labs into industrial applications like product design, design for assembly, training issues, etc. Nevertheless, VR is still suffering from lacking technology to highlight its huge amount of functionality. That means the utilization of VR in a holistic way to combine the real and the virtual world to close the circle, in which the user can switch between both systems is still not common. There is more VR can contribute than an immersive 3D model of real objects and some interaction technology with different devices like 6 DOF mouse, PhantomTM, gloves with tactile feedback, etc. If you want to use VR like the usual technology, you have to integrate the features of 3D, interaction, force feedback, simulation and the real system. The research work to develop such an integrated system is done within a special research project (SFB 467) of the German Research Society (DFG) called "Transformable business structures for multiple-variant series production".


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gabriele Frediani ◽  
Federico Carpi

AbstractMulti-sensory human–machine interfaces are currently challenged by the lack of effective, comfortable and affordable actuation technologies for wearable tactile displays of softness in virtual- or augmented-reality environments. They should provide fingertips with tactile feedback mimicking the tactual feeling perceived while touching soft objects, for applications like virtual reality-based training, tele-rehabilitation, tele-manipulation, tele-presence, etc. Displaying a virtual softness on a fingertip requires the application of quasi-static (non-vibratory) forces via a deformable surface, to control both the contact area and the indentation depth of the skin. The state of the art does not offer wearable devices that can combine simple structure, low weight, low size and electrically safe operation. As a result, wearable softness displays are still missing for real-life uses. Here, we present a technology based on fingertip-mounted small deformable chambers, which weight about 3 g and are pneumatically driven by a compact and cost-effective unit. Weighting less than 400 g, the driving unit is easily portable and can be digitally controlled to stimulate up to three fingertips independently. Psychophysical tests proved ability to generate useful perceptions, with a Just Noticeable Difference characterised by a Weber constant of 0.15. The system was made of off-the-shelf materials and components, without any special manufacturing process, and is fully disclosed, providing schematics and lists of components. This was aimed at making it easily and freely usable, so as to turn tactile displays of softness on fingertips into a technology ‘at fingertips’.


Sign in / Sign up

Export Citation Format

Share Document