scholarly journals Role of γ-glutamyltranspeptidase in osteoclastogenesis induced by Fusobacterium nucleatum

2021 ◽  
Vol 46 (3) ◽  
pp. 127-133
Author(s):  
Aeryun Kim ◽  
◽  
Ji-Hye Kim
1999 ◽  
Vol 30 (4) ◽  
pp. 324-346 ◽  
Author(s):  
Elerson Gaetti-Jardim Júnior ◽  
Mario Julio Avila-Campos

Fusobacterium nucleatum is indigenous of the human oral cavity and has been involved in different infectious processes. The production of bacteriocin-like substances may be important in regulation of bacterial microbiota in oral cavity. The ability to produce bacteriocin-like substances by 80 oral F. nucleatum isolates obtained from periodontal patients, healthy individuals and Cebus apella monkeys, was examinated. 17.5% of all tested isolates showed auto-antagonism and 78.8% iso- or hetero-antagonism. No isolate from monkey was capable to produce auto-inhibition. In this study, the antagonistic substances production was variable in all tested isolates. Most of the F. nucleatum showed antagonistic activity against tested reference strains. These data suggest a possible participation of these substances on the oral microbial ecology in humans and animals. However, the role of bacteriocins in regulating dental plaque microbiota in vivo is discussed.


2019 ◽  
Vol 5 (3) ◽  
pp. 178-187 ◽  
Author(s):  
Chun-Hui Sun ◽  
Bin-Bin Li ◽  
Bo Wang ◽  
Jing Zhao ◽  
Xiao-Ying Zhang ◽  
...  

Pathobiology ◽  
2020 ◽  
pp. 1-14
Author(s):  
José Guilherme Datorre ◽  
Ana Carolina de Carvalho ◽  
Denise Peixoto Guimarães ◽  
Rui Manuel Reis

Colorectal cancer (CRC) is one of the most frequent and deadly neoplasms worldwide. Genetic factors, lifestyle habits, and inflammation are important risk factors associated with CRC development. In recent years, growing evidence has supporting the significant role of the intestinal microbiome in CRC carcinogenesis. Disturbances in the healthy microbial balance, known as dysbiosis, are frequently observed in these patients. Pathogenic microorganisms that induce intestinal dysbiosis have become an important target to determine the role of bacterial infection in tumorigenesis. Interestingly, the presence of different bacterial strains, such as <i>Fusobacterium nucleatum</i>, has been detected in tissue and stool from patients with CRC and associated with substantial clinical and molecular features, as well as with patient therapy response. Therefore, understanding how the presence and levels of <i>F. nucleatum</i>strains in the gut affect the risk of CRC onset and progression may inform suitable candidates for interventions focused on modulation of this bacteria. Here we review new insights into the role of gut microbiota in CRC carcinogenesis and the clinical utility of using the detection of <i>F. nucleatum</i> in different settings such as screening, prognosis, and microbiota modulation as a means to prevent cancer, augment therapies, and reduce adverse effects of treatment.


2020 ◽  
Vol 8 (1) ◽  
pp. 70 ◽  
Author(s):  
Bhumika Shokeen ◽  
Jane Park ◽  
Emily Duong ◽  
Sonam Rambhia ◽  
Manash Paul ◽  
...  

RadD, a major adhesin of oral fusobacteria, is part of a four-gene operon encoding the small lipoprotein FAD-I and two currently uncharacterized small proteins encoded by the rapA and rapB genes. Previously, we described a role for FAD-I in the induction of human B-defensin 2 (hBD2) upon contact with oral epithelial cells. Here, we investigated potential roles for fad-I, rapA, and rapB in interspecies interaction and biofilm formation. Gene inactivation mutants were generated for each of these genes in the nucleatum and polymorphum subspecies of Fusobacterium nucleatum and characterized for their adherence to partner species, biofilm formation, and operon transcription. Binding to Streptococcus gordonii was increased in all mutant strains with Δfad-I having the most significant effect. This increased adherence was directly proportional to elevated radD transcript levels and resulted in significantly different architecture and height of the biofilms formed by Δfad-I and S. gordonii compared to the wild-type parent. In conclusion, FAD-I is important for fusobacterial interspecies interaction as its lack leads to increased production of the RadD adhesin suggesting a role of FAD-I in its regulation. This regulatory effect does not require the presence of functional RadD.


2010 ◽  
Vol 192 (12) ◽  
pp. 2965-2972 ◽  
Author(s):  
Saravanan Periasamy ◽  
Paul E. Kolenbrander

ABSTRACT Human dental biofilm communities comprise several species, which can interact cooperatively or competitively. Bacterial interactions influence biofilm formation, metabolic changes, and physiological function of the community. Lactic acid, a common metabolite of oral bacteria, was measured in the flow cell effluent of one-, two- and three-species communities growing on saliva as the sole nutritional source. We investigated single-species and multispecies colonization by using known initial, early, middle, and late colonizers of enamel. Fluorescent-antibody staining and image analysis were used to quantify the biomass in saliva-fed flow cells. Of six species tested, only the initial colonizer Actinomyces oris exhibited significant growth. The initial colonizer Streptococcus oralis produced lactic acid but showed no significant growth. The early colonizer Veillonella sp. utilized lactic acid in two- and three-species biofilm communities. The biovolumes of all two-species biofilms increased when Veillonella sp. was present as one of the partners, indicating that this early colonizer promotes mutualistic community development. All three-species combinations exhibited enhanced growth except one, i.e., A. oris, Veillonella sp., and the middle colonizer Porphyromonas gingivalis, indicating specificity among three-species communities. Further specificity was seen when Fusobacterium nucleatum (a middle colonizer), Aggregatibacter actinomycetemcomitans (a late colonizer), and P. gingivalis did not grow with S. oralis in two-species biofilms, but inclusion of Veillonella sp. resulted in growth of all three-species combinations. We propose that commensal veillonellae use lactic acid for growth in saliva and that they communicate metabolically with initial, early, middle, and late colonizers to establish multispecies communities on enamel.


2011 ◽  
Vol 37 (11) ◽  
pp. 1531-1535 ◽  
Author(s):  
Tri Huynh ◽  
Radhika V. Kapur ◽  
Chris W. Kaplan ◽  
Nicholas Cacalano ◽  
Susan Kinder Haake ◽  
...  

2009 ◽  
Vol 88 (4) ◽  
pp. 333-338 ◽  
Author(s):  
O.V. Horst ◽  
K.A. Tompkins ◽  
S.R. Coats ◽  
P.H. Braham ◽  
R.P. Darveau ◽  
...  

TGF-β1 exerts diverse functions in tooth development and tissue repair, but its role in microbial defenses of the tooth is not well-understood. Odontoblasts extending their cellular processes into the dentin are the first cells to recognize signals from TGF-β1 and bacteria in carious dentin. This study aimed to determine the role of TGF-β1 in modulating odontoblast responses to oral bacteria. We show that these responses depend upon the expression levels of microbial recognition receptors TLR2 and TLR4 on the cell surface. Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum activated both TLRs, but TLR4 played a greater role. Lack of cell-surface TLR2 was associated with poor response to Streptococcus mutans, Enterococcus faecalis, and Lactobacillus casei. TGF-β1 inhibited TLR2 and TLR4 expression and attenuated odontoblast responses. Our findings suggest that the balance between TLR-mediated inflammation and TGF-β1 anti-inflammatory activity plays an important role in pulpal inflammation.


1998 ◽  
Vol 66 (10) ◽  
pp. 4729-4732 ◽  
Author(s):  
David J. Bradshaw ◽  
Philip D. Marsh ◽  
G. Keith Watson ◽  
Clive Allison

ABSTRACT Coaggregation is a well-characterized phenomenon by which specific pairs of oral bacteria interact physically. The aim of this study was to examine the patterns of coaggregation between obligately anaerobic and oxygen-tolerant species that coexist in a model oral microbial community. Obligate anaerobes other than Fusobacterium nucleatum coaggregated only poorly with oxygen-tolerant species. In contrast, F. nucleatum was able to coaggregate not only with both oxygen-tolerant and other obligately anaerobic species but also with otherwise-noncoaggregating obligate anaerobe–oxygen-tolerant species pairs. The effects of the presence or absence of F. nucleatum on anaerobe survival in both the biofilm and planktonic phases of a complex community of oral bacteria grown in an aerated (gas phase, 200 ml of 5% CO2 in air · min−1) chemostat system were then investigated. In the presence of F. nucleatum, anaerobes persisted in high numbers (>107 · ml−1 in the planktonic phase and >107 · cm−2 in 4-day biofilms). In an equivalent culture in the absence of F. nucleatum, the numbers of black-pigmented anaerobes (Porphyromonas gingivalis and Prevotella nigrescens) were significantly reduced (P ≤ 0.001) in both the planktonic phase and in 4-day biofilms, while the numbers of facultatively anaerobic bacteria increased in these communities. Coaggregation-mediated interactions between F. nucleatum and other species facilitated the survival of obligate anaerobes in aerated environments.


mSphere ◽  
2016 ◽  
Vol 1 (3) ◽  
Author(s):  
Kaitlin J. Flynn ◽  
Nielson T. Baxter ◽  
Patrick D. Schloss

ABSTRACT The oral periodontopathic bacterium Fusobacterium nucleatum has been repeatedly associated with colorectal tumors. Molecular analysis has identified specific virulence factors that promote tumorigenesis in the colon. However, other oral community members, such as members of the Porphyromonas spp., are also found with F. nucleatum on colonic tumors, and thus, narrow studies of individual pathogens do not take community-wide virulence properties into account. A broader view of oral bacterial physiology and pathogenesis identifies two factors that could promote colonization and persistence of oral bacterial communities in the colon. The polymicrobial nature of oral biofilms and the asaccharolytic metabolism of many of these species make them well suited to life in the microenvironment of colonic lesions. Consideration of these two factors offers a novel perspective on the role of oral microbiota in the initiation, development, and treatment of colorectal cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Kaixi Liu ◽  
Xinran Yang ◽  
Mi Zeng ◽  
Yumeng Yuan ◽  
Jianhong Sun ◽  
...  

Background. Accurate analysis of intestinal microbiota will facilitate establishment of an evaluating system for assessing colorectal cancer (CRC) risk and prognosis. This study evaluates the potential role of Fusobacterium nucleatum (F. nucleatum) and Escherichia coli with a pks gene (pks+ E. coli) in early CRC diagnosis. Methods. We recruited 139 patients, including CRC ( n = 60 ), colorectal adenomatous polyposis (CAP) ( n = 37 ), and healthy individuals ( n = 42 ) based on their colonoscopy examinations. We collected stool and serum samples from the participants and measured the relative abundance of F. nucleatum and pks+ E. coli in fecal samples by quantitative PCR. Receiver operating characteristic curve (ROC) analyses were used to analyze the diagnostic value of single or combined biomarkers. Results. Fecal F. nucleatum and pks+ E. coli levels were higher in the CRC group in either the CAP group or healthy controls ( P = 0.02 ; 0.01). There was no statistical difference in the distribution of F. nucleatum and pks+ E. coli in patients with different tumor sites ( P > 0.05 ). The combination of F. nucleatum+pks+ E. coli+CEA+CA19-9+FOBT was chosen as the optimal panel in differentiating both CRC and CAP from the controls. The combination of F. nucleatum, pks+ E. coli, and FOBT improved diagnostic efficiency. However, there was difficulty in differentiating CRC from CAP. Conclusion. Our results suggested that combining bacterial markers with conventional tumor markers improves the diagnostic efficiency for noninvasive diagnosis of CRC.


Sign in / Sign up

Export Citation Format

Share Document