Evolution of the entrance rate and of the spatio-temporal distribution of Lessepsian Crustacea Decapoda in the Mediterranean Sea

Crustaceana ◽  
2010 ◽  
Vol 83 (12) ◽  
pp. 1409-1430 ◽  
Author(s):  
◽  
◽  
◽  
2011 ◽  
Vol 11 (8) ◽  
pp. 2125-2135 ◽  
Author(s):  
S. Shalev ◽  
H. Saaroni ◽  
T. Izsak ◽  
Y. Yair ◽  
B. Ziv

Abstract. The spatio-temporal distribution of lightning flashes over Israel and the neighboring area and its relation to the regional synoptic systems has been studied, based on data obtained from the Israel Lightning Location System (ILLS) operated by the Israel Electric Corporation (IEC). The system detects cloud-to-ground lightning discharges in a range of ~500 km around central Israel (32.5° N, 35° E). The study period was defined for annual activity from August through July, for 5 seasons in the period 2004–2010. The spatial distribution of lightning flash density indicates the highest concentration over the Mediterranean Sea, attributed to the contribution of moisture as well as sensible and latent heat fluxes from the sea surface. Other centers of high density appear along the coastal plain, orographic barriers, especially in northern Israel, and downwind from the metropolitan area of Tel Aviv, Israel. The intra-annual distribution shows an absence of lightning during the summer months (JJA) due to the persistent subsidence over the region. The vast majority of lightning activity occurs during 7 months, October to April. Although over 65 % of the rainfall in Israel is obtained during the winter months (DJF), only 35 % of lightning flashes occur in these months. October is the richest month, with 40 % of total annual flashes. This is attributed both to tropical intrusions, i.e., Red Sea Troughs (RST), which are characterized by intense static instability and convection, and to Cyprus Lows (CLs) arriving from the west. Based on daily study of the spatial distribution of lightning, three patterns have been defined; "land", "maritime" and "hybrid". CLs cause high flash density over the Mediterranean Sea, whereas some of the RST days are typified by flashes over land. The pattern defined "hybrid" is a combination of the other 2 patterns. On CL days, only the maritime pattern was noted, whereas in RST days all 3 patterns were found, including the maritime pattern. It is suggested that atmospheric processes associated with RST produce the land pattern. Hence, the occurrence of a maritime pattern in days identified as RST reflects an "apparent RST". The hybrid pattern was associated with an RST located east of Israel. This synoptic type produced the typical flash maximum over the land, but the upper-level trough together with the onshore winds it induced over the eastern coast of the Mediterranean resulted in lightning activity over the sea as well, similar to that of CLs. It is suggested that the spatial distribution patterns of lightning may better identify the synoptic system responsible, a CL, an "active RST" or an "apparent RST". The electrical activity thus serves as a "fingerprint" for the synoptic situation responsible for its generation.


Author(s):  
ERHAN MUTLU ◽  
ILARIA DE MEO ◽  
CLAUDIA MIGLIETTA

Pufferfish represent a serious threat to the marine ecosystem in the Mediterranean Sea. To better understand the population dynamics of pufferfish and their relation with ecological parameters, six pufferfish species were studied in two fishing and one non-fishing zone in one of the most oligotrophic regions of the Mediterranean Sea during 2014 and 2015, including different habitats of vegetated and non-vegetated and seasons. The results provide information on pufferfish ecological status compared with more eutrophic zones in which these species could potentially worsen their impact. Four species were common in the study area and two were rare. The dominant species was Lagocephalus suezensis, reaching abundances of 11,000 ind/km2 at 25 m in October, followed by Lagocephalus sceleratus, Lagocephalus guentheri, and Torquigener flavimaculosus. The rarest species, Tylerius spinosissimus and Sphoeroides pachygaster, reached higher abundance and biomass in October and February than the other sampling months. The riverine and meadow habitats played a crucial role for nursing and reproduction in the population dynamics of Lagocephalus species, while T. flavimaculosus was absent in these areas. Sex ratios changed depending on season and location. The occurrence of larger individuals of Lagocephalus spp. and T. flavimaculosus at greater depths evidenced an ontogenetic migration. Overall, length-weight (L-W) relationships indicate isometric growth for each of the species studied. Pufferfish populations were primarily a function of habitat and depth of seafloor and secondarily with water productivity.


2020 ◽  
Vol 83 (S1) ◽  
pp. 21 ◽  
Author(s):  
Letizia Sion ◽  
Walter Zupa ◽  
Crescenza Calculli ◽  
Germana Garofalo ◽  
Manuel Hidalgo ◽  
...  

The present study provides updated information on the occurrence, abundance and biomass distribution patterns and length frequencies of Merluccius merluccius in the Mediterranean Sea, by analysing a time series of data from the Mediterranean International Trawl Surveys (MEDITS) from 1994 to 2015. The highest values of abundance and biomass were observed in the Sardinian Seas. The use of a generalized additive model, in which standardized biomass indices (kg km–2) were analysed as a function of environmental variables, explained how ecological factors could affect the spatio-temporal distribution of European hake biomass in the basin. High biomass levels predicted by the model were observed especially at 200 m depth and between 14°C and 18°C, highlighting the preference of the species for colder waters. A strong reduction of biomass was observed since the year 2009, probably due to the strengthening of the seasonal thermocline that had greatly reduced the availability of food. The general decrease in biomass of several stocks of anchovy and sardine, preys of European hake, might be indirectly connected to the decreasing biomass detected in the present study. The length analysis shows median values lower than 200 mm total length of most of the investigated areas.


2002 ◽  
Vol 66 (S2) ◽  
pp. 39 ◽  
Author(s):  
George Tserpes ◽  
Fabio Fiorentino ◽  
Dino Levi ◽  
Angelo Cau ◽  
Matteo Murenu ◽  
...  

The present work attempts to study the spatio-temporal distribution of Mullus barbatus and M. surmuletus in the Mediterranean Sea by using a time series of data from an international bottom trawl survey that covered a wide area of the Mediterranean Sea. The experimental surveys were accomplished annually from 1994 to 2000 on approximately 1000 pre-defined sampling stations distributed in 15 major areas. Selection of stations was based on a depth-stratified random sampling scheme that included five depth strata: 10-50, 50-100, 100-200, 200-500 and 500-800 m. The examined species were found throughout the studied region, mostly in depths down to 200 m. Abundance differences among major areas were found to be statistically significant and were attributed to the different exploitation patterns, as well as the different abiotic and biotic conditions prevailing in each area. Although both species undergo high fishing pressure, results did not demonstrate any decreasing trends in their abundance indices suggesting the existence of a good stock-recruitment relationship over the studied period. However, the dominance of young fish that has been found, makes the stocks highly vulnerable to recruitment changes; hence protection of spawning and nursery areas seems to be essential for their conservation.


2020 ◽  
Vol 83 (S1) ◽  
pp. 129 ◽  
Author(s):  
Elena Barcala ◽  
Jose Maria Bellido ◽  
Andrea Bellodi ◽  
Pierluigi Carbonara ◽  
Roberto Carlucci ◽  
...  

The Mediterranean distributions of two species of anglerfish, the blackbellied anglerfish (Lophius budegassa) and the white anglerfish (Lophius piscatorius), were analysed from trawl survey data (MEDITS project – Spain, France, Italy and Greece) from 2006 to 2015 implementing a Delta model approach with residuals autocovariate boosted regression trees. Sea bottom temperature (SBT), sea bottom salinity (SBS), bathymetry, slope of the seabed and distance to the coast were considered possible predictors. The results show that the locations with a higher presence, abundance and biomass of L. budegassa are those with a depth range between 150 to 300 m, with an SBT range between 17.5 and 18.5°C, and SBS of 37-38 PSU. Similarly, L. piscatorius shows a higher probability of presence, abundance and biomass in location with a bathymetry range of 200-400 m, an SBT of 17.5°C to 18.5°C and an SBS of 36.5 to 37.5. Our results identify preference habitats for the anglerfishes in the Mediterranean Sea such as the Aegean Sea, the Gulf of Lions, south and southeast Spain and the northwestern Ionian Sea. In general terms, these findings enhance our understanding of the differences in the spatio-temporal distribution of these two species, providing useful information that can help their fisheries management and conservation.


2013 ◽  
Vol 14 (1) ◽  
pp. 193 ◽  
Author(s):  
M. BONACORSI ◽  
C. PERGENT-MARTINI ◽  
N. BREAND ◽  
G. PERGENT

Over the last few years, a widespread regression of Posidonia oceanica meadows has been noticed in the Mediterranean Sea. However, the magnitude of this decline is still debated. The objectives of this study are (i) to assess the spatio-temporal evolution of Posidonia oceanica around Cap Corse (Corsica) over time comparing available ancient maps (from 1960) with a new (2011) detailed map realized combining different techniques (aerial photographs, SSS, ROV, scuba diving); (ii) evaluate the reliability of ancient maps; (iii) discuss observed regression of the meadows in relation to human pressure along the 110 km of coast. Thus, the comparison with previous data shows that, apart from sites clearly identified with the actual evolution, there is a relative stability of the surfaces occupied by the seagrass Posidonia oceanica. The recorded differences seem more related to changes in mapping techniques. These results confirm that in areas characterized by a moderate anthropogenic impact, the Posidonia oceanica meadow has no significant regression and that the changes due to the evolution of mapping techniques are not negligible. However, others facts should be taken into account before extrapolating to the Mediterranean Sea (e.g. actually mapped surfaces) and assessing the amplitude of the actual regression.


2015 ◽  
Vol 130 ◽  
pp. 65-74 ◽  
Author(s):  
Victoria Granger ◽  
Jean-Marc Fromentin ◽  
Nicolas Bez ◽  
Giulio Relini ◽  
Christine N. Meynard ◽  
...  

2005 ◽  
Vol 6 (1) ◽  
pp. 17 ◽  
Author(s):  
O. DALY YAHIA-KEFI ◽  
S. SOUISSI ◽  
F. GOMEZ ◽  
M.N. DALY YAHIA

Microphytoplankton composition and its relationships with hydrology and nutrient distributions were investigated over 24 months (December 1993 - November 1995) in the Bay of Tunis ( SW Mediterranean Sea). A new index, the ‘Specific Preference Index’ (SPI) obtained by computing the median value of each parameter weighed by the numerical value of each species density was developed. Using this index, the relationships between each species and temperature, salinity and major nutrients were analysed. The distribution of chlorophyll a did not show a clear correlation with microplankton abundance suggesting that other factors contribute to chlorophyll concentration, such as smaller phytoplankton size fractions or detritus. The winter-spring diatom blooms did not show a regular pattern during both years. High nutrient inputs in late summer, associated with mild meteorological conditions, contributed to the development of a large diatom bloom in autumn 1995 where significant silicate depletion was witnessed. Generally, diatoms were more stenotherm than dinoflagellates in the Bay, whereas dinoflagellates were more stenohaline than diatoms. The statistical analyses showed that the two species, Bellerochea horologicalis , and Lithodesmioides polymorpha, var., tunisiense, appeared in a wide range of environmental conditions. An excess of phosphateversus nitrate appeared to be associated with red tides of, Gymnodinium spp, whereas Peridinium quinquecorne, showed the opposite. Phosphate concentrations appear to be crucial in this coastal environment, where diatom blooms are often limited by low silicate availability.


2021 ◽  
Vol 13 (12) ◽  
pp. 2389
Author(s):  
Daniele Ciani ◽  
Elodie Charles ◽  
Bruno Buongiorno Buongiorno Nardelli ◽  
Marie-Hélène Rio ◽  
Rosalia Santoleri

Measuring the ocean surface currents at high spatio-temporal resolutions is crucial for scientific and socio-economic applications. Since the early 1990s, the synoptic and global-scale monitoring of the ocean surface currents has been provided by constellations of radar altimeters. By construction, altimeter constellations provide only the geostrophic component of the marine surface currents. In addition, given the effective spatial-temporal resolution of the altimeter-derived products (O (100 km) and O (10 days), respectively), only the largest ocean mesoscale features can be resolved. In order to enhance the altimeter system capabilities, we propose a synergistic use of high resolution sea surface Chlorophyll observations (Chl) and altimeter-derived currents’ estimates. The study is focused on the Mediterranean Sea, where the most energetic signals are found at spatio-temporal scales up to 10 km and a few days. The proposed method allows for inferring the marine surface currents from the evolution of the Chl field, relying on altimeter-derived currents as a first-guess estimate. The feasibility of this approach is tested through an Observing System Simulation Experiment, starting from biogeochemical model outputs distributed by the European Copernicus Marine Service. Statistical analyses based on the 2017 daily data showed that our approach can improve the altimeter-derived currents accuracy up to 50%, also enhancing their effective spatial resolution up to 30 km. Moreover, the retrieved currents exhibit larger temporal variability than the altimeter estimates over annual to weekly timescales. Our method is mainly limited to areas/time periods where/when Chl gradients are larger and are modulated by the marine currents’ advection. Its application is thus more efficient when the surface Chl evolution is not dominated by the biological activity, mostly occurring in the mid-February to mid-March time window in the Mediterranean Sea. Preliminary tests on the method applicability to satellite-derived data are also presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document