Demography of common toads after local extirpation of co-occurring midwife toads

2014 ◽  
Vol 35 (3) ◽  
pp. 293-303 ◽  
Author(s):  
Jaime Bosch ◽  
Saioa Fernández-Beaskoetxea ◽  
Rick D. Scherer ◽  
Staci M. Amburgey ◽  
Erin Muths

Estimating demographic parameters like survival or recruitment provides insight into the state and trajectory of populations, but understanding the contexts influencing those parameters, including both biotic and abiotic factors, is particularly important for management and conservation. At a high elevation national park in Central Spain, common toads (Bufo bufo) are apparently taking advantage of the near-extirpation of the midwife toad (Alytes obstetricans), as colonization into new breeding ponds is evident. Within this scenario, we expected demographic parameters of common toad populations to be affected favorably by the putative release from competition. However, we found the population growth rate was negative in 4 of 5 years at the long-standing population; survival probability at the long-standing population and newly-colonised breeding ponds was lower than reported for other toads living at high elevations and the probability of recruitment was inadequate to compensate for the survival rate in maintaining a positive trajectory for either of the breeding ponds. We assessed weather covariates and disease for their contribution to the context that may be limiting the common toad’s successful use of the niche vacated by the midwife toad.

Diversity ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 200
Author(s):  
Eric J. Gangloff ◽  
Sierra Spears ◽  
Laura Kouyoumdjian ◽  
Ciara Pettit ◽  
Fabien Aubret

Ectothermic animals living at high elevation often face interacting challenges, including temperature extremes, intense radiation, and hypoxia. While high-elevation specialists have developed strategies to withstand these constraints, the factors preventing downslope migration are not always well understood. As mean temperatures continue to rise and climate patterns become more extreme, such translocation may be a viable conservation strategy for some populations or species, yet the effects of novel conditions, such as relative hyperoxia, have not been well characterised. Our study examines the effect of downslope translocation on ectothermic thermal physiology and performance in Pyrenean rock lizards (Iberolacerta bonnali) from high elevation (2254 m above sea level). Specifically, we tested whether models of organismal performance developed from low-elevation species facing oxygen restriction (e.g., hierarchical mechanisms of thermal limitation hypothesis) can be applied to the opposite scenario, when high-elevation organisms face hyperoxia. Lizards were split into two treatment groups: one group was maintained at a high elevation (2877 m ASL) and the other group was transplanted to low elevation (432 m ASL). In support of hyperoxia representing a constraint, we found that lizards transplanted to the novel oxygen environment of low elevation exhibited decreased thermal preferences and that the thermal performance curve for sprint speed shifted, resulting in lower performance at high body temperatures. While the effects of hypoxia on thermal physiology are well-explored, few studies have examined the effects of hyperoxia in an ecological context. Our study suggests that high-elevation specialists may be hindered in such novel oxygen environments and thus constrained in their capacity for downslope migration.


2000 ◽  
Vol 90 (6) ◽  
pp. 621-628 ◽  
Author(s):  
Thinlay ◽  
R. S. Zeigler ◽  
M. R. Finckh

Thirty isolates of P. griseacollected from rice during a blast epidemic in 1995 in the high (1,800 to 2,600 m) and middle (1,200 to 1,800 m) elevations of Bhutan and 80 isolates collected from one rice cultivar from two high- and two mid-elevation sites in 1996 were analyzed for virulence. Differential varieties were indica CO39, with five near-isogenic lines (NILs) for resistance genes in the genetic background of CO39, and japonica Lijiangxintuanheigu (LTH), with five NILs for LTH. Twelve selected Bhutanese landraces also were studied. In addition, 10 blast nurseries consisting of the NIL sets, important local landraces, and representatives of international differential groups were established in the 1996 and 1997 growing seasons in the mid- and high-elevation agroecological zones. The 110 isolates were differentiated into 53 pathotypes based on the 2 NIL sets. Thirteen isolates were avirulent on all of the NILs but were compatible with some landraces. Several isolates were able to attack one of the NILs of CO39 but not CO39. These results strongly suggest that both CO39 and LTH possess previously unidentified resistance. The landraces were not uniform in their reactions to the isolates. When a reaction index taking into account all individual plant reactions was used, isolates that had been assigned to the same pathotype could be further differentiated, indicating that the NIL sets could not completely discriminate virulences in Bhutanese P. grisea populations. In the trap nurseries, disease was always present in the middle elevations, but disease was very low during July 1996 in the high elevations and only present during August and September 1997. Almost all varietal groups were more frequently attacked in the middle than in the high elevations, indicating that the virulence spectrum is wider and the conduciveness of the environment is greater in the middle elevations. Landraces from the high elevations were most susceptible, followed by international differential groups 7 and 8. The results suggest that selection has yielded landraces with more complete and complex resistance in the more disease-conducive mid-elevation environment. At the same time, the pathogen population also possesses a wider virulence spectrum in that environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Martin U. Grüebler ◽  
Johann von Hirschheydt ◽  
Fränzi Korner-Nievergelt

AbstractThe formation of an upper distributional range limit for species breeding along mountain slopes is often based on environmental gradients resulting in changing demographic rates towards high elevations. However, we still lack an empirical understanding of how the interplay of demographic parameters forms the upper range limit in highly mobile species. Here, we study apparent survival and within-study area dispersal over a 700 m elevational gradient in barn swallows (Hirundo rustica) by using 15 years of capture-mark-recapture data. Annual apparent survival of adult breeding birds decreased while breeding dispersal probability of adult females, but not males increased towards the upper range limit. Individuals at high elevations dispersed to farms situated at elevations lower than would be expected by random dispersal. These results suggest higher turn-over rates of breeding individuals at high elevations, an elevational increase in immigration and thus, within-population source-sink dynamics between low and high elevations. The formation of the upper range limit therefore is based on preference for low-elevation breeding sites and immigration to high elevations. Thus, shifts of the upper range limit are not only affected by changes in the quality of high-elevation habitats but also by factors affecting the number of immigrants produced at low elevations.


2020 ◽  
Vol 41 (2) ◽  
pp. 261-267 ◽  
Author(s):  
Andrés Fernández-Loras ◽  
Luz Boyero ◽  
Jaime Bosch

Abstract Chytridiomycosis, an emerging infectious disease caused by the fungus Batrachochytrium dendrobatidis (Bd), is causing sharp declines in amphibian populations around the globe. A substantial research effort has been made to study the disease, including treatments against Bd, but most treatments have been applied to captive amphibians only. We report a study aimed at clearing wild populations of the Common Midwife toad Alytes obstetricans. We removed all larvae from natural breeding sites (cattle troughs) and conducted two types of severe breeding habitat manipulation (complete drying and fencing for the whole breeding season). While larval removal followed by drying was a successful method of Bd elimination, the effect was only temporary. Since terrestrial habits of adult A. obstetricans prevent them from infection, our findings suggest that, even in simple breeding habitats where all aquatic amphibian stages can be handled and extreme habitat intervention is possible, Bd cannot be eliminated without controlling other potential Bd reservoirs in the surroundings of breeding sites.


2016 ◽  
Vol 57 (71) ◽  
pp. 212-222 ◽  
Author(s):  
Martin Heynen ◽  
Evan Miles ◽  
Silvan Ragettli ◽  
Pascal Buri ◽  
Walter W. Immerzeel ◽  
...  

AbstractAir temperature is a key control of processes affecting snow and glaciers in high-elevation catchments, including melt, snowfall and sublimation. It is therefore a key input variable to models of land–surface–atmosphere interaction. Despite this importance, its spatial variability is poorly understood and simple assumptions are made to extrapolate it from point observations to the catchment scale. We use a dataset of 2.75 years of air temperature measurements (from May 2012 to November 2014) at a network of up to 27 locations in the Langtang River, Nepal, catchment to investigate air temperature seasonality and consistency between years. We use observations from high elevations and from the easternmost section of the basin to corroborate previous findings of shallow lapse rates. Seasonal variability is strong, with shallowest lapse rates during the monsoon season. Diurnal variability is also strong and should be taken into account since processes such as melt have a pronounced diurnal variability. Use of seasonal lapse rates seems crucial for glacio-hydrological modelling, but seasonal lapse rates seem stable over the 2–3 years investigated. Lateral variability at transects across valley is high and dominated by aspect, with south-facing sites being warmer than north-facing sites and deviations from the fitted lapse rates of up to several degrees. Local factors (e.g. topographic shading) can reduce or enhance this effect. The interplay of radiation, aspect and elevation should be further investigated with high-elevation transects.


2019 ◽  
Vol 92 (2) ◽  
pp. 365-380 ◽  
Author(s):  
James V. Benes ◽  
Virginia Iglesias ◽  
Cathy Whitlock

AbstractThe postglacial vegetation and fire history of the Greater Yellowstone Ecosystem is known from low and middle elevations, but little is known about high elevations. Paleoecologic data from Fairy Lake in the Bridger Range, southwestern Montana, provide a new high-elevation record that spans the last 15,000 yr. The records suggest a period of tundra-steppe vegetation prior to ca. 13,700 cal yr BP was followed by open Picea forest at ca. 11,200 cal yr BP. Pinus-Pseudotsuga parkland was present after ca. 9200 cal yr BP, when conditions were warmer/drier than present. It was replaced by mixed-conifer parkland at ca. 5000 cal yr BP. Present-day subalpine forest established at ca. 2800 cal yr BP. Increased avalanche or mass-wasting activity during the early late-glacial period, the Younger Dryas chronozone, and Neoglaciation suggest cool, wet periods. Sites at different elevations in the region show (1) synchronous vegetation responses to late-glacial warming; (2) widespread xerothermic forests and frequent fires in the early-to-middle Holocene; and (3) a trend to forest closure during late-Holocene cooling. Conditions in the Bridger Range were, however, wetter than other areas during the early Holocene. Across the Northern Rockies, postglacial warming progressed from west to east, reflecting range-specific responses to insolation-driven changes in climate.


2020 ◽  
Vol 41 (1) ◽  
pp. 105-112
Author(s):  
Christophe Dufresnes ◽  
Íñigo Martínez-Solano

Abstract While estimates of genetic divergence are increasingly used in molecular taxonomy, hybrid zone analyses can provide decisive evidence for evaluating candidate species. Applying a population genomic approach (RAD-sequencing) to a fine-scale transect sampling, we analyzed the transition between two Iberian subspecies of the common midwife toad (Alytes obstetricans almogavarii and A. o. pertinax) in Catalonia (northeastern Spain), which putatively diverged since the Plio-Pleistocene. Their hybrid zone was remarkably narrow, with extensive admixture restricted to a single locality (close to Tarragona), and congruent allele frequency clines for the mitochondrial (13 km wide) and the average nuclear genomes (16 km wide). We also fitted clines independently for 89 taxon-diagnostic SNPs: most of them behave like the nuclear background, but a subset (13%) is completely impermeable to gene flow and might be linked to barrier loci involved in hybrid incompatibilities. Assuming that midwife toads are able to disperse in the area of contact, we conclude that these taxa experience partial reproductive isolation and represent incipient species, i.e. Alytes almogavarii and Alytes obstetricans. Interestingly, their evolutionary age and mitochondrial divergence fall below the thresholds proposed in molecular systematics studies, emphasizing the difficulty of predicting the outcome of secondary contacts between young lineages entering the grey zone of speciation.


Sign in / Sign up

Export Citation Format

Share Document