Effect of nematode infection and damage on the root system and plant growth of three Musa cultivars commonly grown in Uganda

Nematology ◽  
2006 ◽  
Vol 8 (2) ◽  
pp. 177-189 ◽  
Author(s):  
Dirk De Waele ◽  
Paul Speijer ◽  
Clifford Gold ◽  
Rony Swennen ◽  
Herbert Talwana

AbstractBanana production in East Africa is threatened by declining yields partly caused by plant-parasitic nematodes. Attempts to ameliorate this damage are hampered by a lack of information on the characteristics of the root systems of healthy and nematode infested roots of commonly grown banana cultivars. An experiment in hydroponic culture, where healthy root systems were established, demonstrated that there were differences in number, size and distribution of primary, secondary and tertiary roots among the cultivars Nabusa, Pisang Awak and Sukali Ndizi. Field experiments carried out at three sites in Uganda showed that nematode damage on the same cultivars increased the number of primary roots and root bases, either increased or decreased root length depending on the cultivar or nematode species involved, but always decreased root length density. Root number and size are probably critical factors in determining plant tolerance to nematodes. Our findings should help plant breeding programmes, which must establish those selection criteria that are most likely to reduce the debilitating effects of nematode damage.

Nematology ◽  
2021 ◽  
pp. 1-7
Author(s):  
Azzam Saleh ◽  
Mustafa İmren ◽  
Göksel Özer ◽  
Mehmet Z. Yeken ◽  
Vahdettin Çiftçi ◽  
...  

Summary Pratylenchus thornei and P. neglectus attack common bean and cause economic yield losses throughout cultivated areas in Turkey. The most effective management strategy for the P. thornei and P. neglectus infections is crop rotation with non-host crops and breeding resistant/tolerant varieties. However, parent bean genotypes immune to P. thornei and P. neglectus are not available for breeding programmes; thus, resistant varieties are commonly incorporated as parents. In the present research, a total of 36 common bean varieties were tested in a growth room for their host response to these two nematode pests. The reproduction factor and the population density of both nematode species were calculated. All tested bean varieties showed varying levels of resistance and susceptibility to P. thornei and P. neglectus. Among the dry bean varieties, nine were found to be resistant to P. thornei and three to P. neglectus, with three varieties (‘Kantar-05’, ‘Önceler-98’ and ‘Karacasehir-90’) resistant to both species. Among fresh bean varieties, ten were found to be resistant to P. thornei and four to P. neglectus, with four varieties (‘Helda’, ‘Gina’, ‘Gelincik’ and ‘Bourgondia’) resistant to both species. The resistant common bean varieties identified in this study are a valuable untapped genetic pool that will offer improved resistance levels to P. thornei and P. neglectus, especially ‘Gina’ and ‘Önceler-98’, which seem to possess a great source of resistance to P. thornei and P. neglectus, respectively, and can be used in breeding programmes in the near future.


2021 ◽  
Vol 13 (4) ◽  
pp. 1
Author(s):  
L. Shen ◽  
X. Y. Wang ◽  
T. T. Yang ◽  
Y. X. Teng ◽  
T. T. Liu ◽  
...  

Aboveground and belowground interactions are crucial in the over-yielding of intercropping systems. However, the relative effects of aboveground and belowground interactions on yields in maize (Zea mays L.) and soybean (Glycine max) intercropping systems are still unclear. Field experiments, including measurements of plant height, soil-plant analysis development (SPAD) value, photosynthetically active radiation (PAR), root length density (RLD), root volume density (RVD), and grain yield, were conducted in 2018-2019 to analyze the advantages and effects of above-ground and belowground inter-species interactions. This study adopted three different planting patterns: mono-cropping maize (MM), mono-cropping soybeans (MS), and maize-soybean intercropping (IM and IS). This study showed that intercropping promotes the growth of maize and makes maize have a better photosynthetic environment, while the growth of intercropping soybeans is inhibited and the photosynthetic environment becomes worse. In the upper layer (0-40 cm) and close to the plants, the root growth and distribution of intercropped maize increased, resulting in greater root length density and volume density, while the root growth and distribution of intercropped soybean decreased, resulting in lower root length density and volume density. The intercropping increased the maize yield by 18.52-19.8%, and reduced the soybean yield by 55.87-57.44%. The results indicated that intercropping improves the competitiveness of maize and reduces the competitiveness of soybeans. The increase in maize yield made up for the loss of soybean yield and led to an overall significant advantage in the maize-soybean intercropping system.


2003 ◽  
Vol 43 (5) ◽  
pp. 503 ◽  
Author(s):  
D. J. Firth ◽  
R. D. B. Whalley ◽  
G. G. Johns

Whole-tree excavations, root-core and minirhizotron studies indicate that the grafted macadamia tree root system is relatively shallow and spreading, with a short taproot and most of the fibrous root system near the soil surface, while ungrafted trees have a longer taproot. The length of fibrous roots diminished with depth and distance from the trunk. This pattern is consistent with other fruit trees, in that the highest density is generally within 1 m of the trunk. Values obtained in core samples in this study were 4.97 (± 0.43) cm/cm3 and 1.67 (± 0.45) cm/cm3 for 0–10 cm and 10–20 cm at 0.5 m from the trunk, and 2.34 and 1.08 cm/cm3, respectively, at 1 m from the trunk at Clunes. These values were similar to those obtained in separate studies in 1991–93, involving assessments at 5�cm depth increments down to 15 cm, where mean root length densities were 2.0–3.5 cm/cm3 and 1.3–1.9 cm/cm3 at 0–5 cm and 5–15 cm depth, respectively, 1.4 m from the trunk. Root length under old trees in bare soil at Dorroughby and Clunes, using minirhizotrons (0.25–0.40 cm/cm2) and soil cores (1.14 and 3.50 cm/cm3, respectively), was similar to that found at other sites in the study area (minirhizotrons 0.28–0.33 cm/cm2; soil cores 1.25–2.80 cm/cm3). There is an apparent lower rate of decrease in root length density with increasing distance from the trunk at 10–20 cm compared with 0–10 cm. New root growth occurred predominantly in autumn, but some new fibrous roots were produced in early winter and spring. Proteoid roots were found in abundance in soil cores and adjacent to minirhizotron tubes and there were more of them in the root systems of younger trees at Clunes than with older trees at Dorroughby. Proteoid roots were found at a greater depth than previously recorded for other Proteaceae species, and appeared to retain their function in relatively dry conditions for more than a year. Non-proteoid fibrous roots at the minirhizotron surface appeared to be functional for about 1.5 years in relatively dry conditions, before decay after the onset of wet soil conditions.The effects of 2 newly established perennial legume groundcovers on the root systems of younger and older macadamia trees were studied over 2.5 years. In general, the presence of groundcover either had no effect on the growth of the macadamia roots or increased the root length density at some sampling dates and some depths. At Clunes, where the proteoid root length density was higher than at Dorroughby, the presence of groundcover was associated with higher proteoid root length density than that with bare ground. Arachis pintoi cv. Amarillo generally had a lower root length density than Lotus pedunculatus.


2016 ◽  
Vol 26 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Claudia Fassio ◽  
Ricardo Cautin ◽  
Alonso Pérez-Donoso ◽  
Claudia Bonomelli ◽  
Mónica Castro

Root morphological traits and biomass allocation were studied in 2-year-old ‘Duke 7’ avocado (Persea americana) trees propagated using seedling and clonal techniques. The plants either were or were not grafted with the scion ‘Hass’. Whole tree excavation 1 year after planting revealed that the propagation technique affected the root growth angle of the main roots (third order roots), the root length density (defined as the total length of roots per volume of soil), and the number of first and second order roots present. The root system of clonal trees showed a typical morphology of rooted cuttings, with a crown of roots originating from a relatively short stem, resulting in a shallow root system. Clonal trees, compared with seedlings, produced main framework roots with shallower angles and more fine roots (first and second order roots) that increased the root length density (defined as the total length of roots per volume of soil). Nongrafted seedlings exhibited a main taproot and lateral roots with narrow angles that penetrated deeper into the soil and increased the aboveground biomass but had a lower root-to-shoot ratio than nongrafted clonal trees. The grafting of both clonal and seedling trees resulted in similar root architecture and revealed that grafting significantly decreased the soil volume explored and the shoot and root biomass. Although both root systems were shallow, grafted clonal trees had a higher root-to-shoot ratio than grafted seedlings. In this study, a distinct class of roots with large diameter and unbranched growth was more abundant in the root systems of clonal trees. These types of roots (previously undescribed in avocado trees), called pioneer roots, may enhance soil exploration in clonal trees.


2021 ◽  
Author(s):  
Xiucheng Liu ◽  
Yuting Wang ◽  
Shuangri Liu ◽  
Miao Liu

Abstract Aims Phosphorus (P) availability and efficiency are especially important for plant growth and productivity. However, the sex-specific P acquisition and utilization strategies of dioecious plant species under different N forms are not clear. Methods This study investigated the responsive mechanisms of dioecious Populus cathayana females and males based on P uptake and allocation to soil P supply under N deficiency, nitrate (NO3 −) and ammonium (NH4 +) supply. Important Findings Females had a greater biomass, root length density (RLD), specific root length (SRL) and shoot P concentration than males under normal P availability with two N supplies. NH4 + supply led to higher total root length, RLD and SRL but lower root tip number than NO3 − supply under normal P supply. Under P deficiency, males showed a smaller root system but greater photosynthetic P availability and higher leaf P remobilization, exhibiting a better capacity to adaptation to P-deficiency than females. Under P deficiency, NO3 − supply increased leaf photosynthesis and PUE but reduced RLD and SRL in females while males had higher leaf P redistribution and photosynthetic PUE than NH4 + supply. Females had a better potentiality to cope with P deficiency under NO3 − supply than NH4 + supply; the contrary was true for males. These results suggest that females may devote to increase in P uptake and shoot P allocation under normal P availability, especially under NO3 − supply, while males adopt more efficient resource use and P remobilization to maximum their tolerance to P-deficiency.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1054
Author(s):  
Bo Li ◽  
Xinyu Chen ◽  
Xiaoxu Shi ◽  
Jian Liu ◽  
Yafeng Wei ◽  
...  

Ridge tillage is an effective agronomic practice and a miniature precision agriculture; however, its effects on the growth of faba beans (Vicia faba L.) are poorly understood. This study aimed to determine the effect of ridge tillage and straw mulching on the root growth, nutrient accumulation and yield of faba beans. Field experiments were conducted during 2016 and 2017 cropping seasons and comprised four treatments: ridge tillage without any mulching (RT), flat tillage without any mulch (FT), flat tillage with rice straw mulched on the ridge tillage (FTRSM) and ridge tillage with rice straw mulched on the ridge tillage (RTRSM). The RT and RTRSM increased soil temperature and decreased soil humidity and improved soil total nitrogen, total phosphorus, available potassium and organic matter. RT and RTRSM increased the root length density, root surface area, root diameter and root activity of faba beans at flowering and harvest periods. The RT and RTRSM also increased the nitrogen, phosphorus, potassium absorption and the yield of faba beans. These results indicated that ridge tillage and straw mulching affect faba bean growth by improving soil moisture conditions and providing good air permeability and effective soil nutrition supply. This study provides a theoretical basis for the high yield cultivation improvement of faba beans.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Khalid M. Mohammedsalih ◽  
Jürgen Krücken ◽  
Ahmed Bashar ◽  
Fathel-Rahman Juma ◽  
Abdalhakaim A. H. Abdalmalaik ◽  
...  

Abstract Background Benzimidazole (BZ) anthelmintics are widely used to control infections with parasitic nematodes, but BZ resistance is an emerging threat among several nematode species infecting humans and animals. In Sudan, BZ-resistant Haemonchus contortus populations were recently reported in goats in South Darfur State. The objective of this study was to collect data regarding the situation of BZ resistance in cattle parasitic nematodes in South Darfur using phenotypic and molecular approaches, besides providing some epidemiological data on nematodes in cattle. Methods The faecal egg count reduction test and the egg hatch test (EHT) were used to evaluate benzimidazole efficacy in cattle nematodes in five South Darfur study areas: Beleil, Kass, Nyala, Rehed Al-Birdi and Tulus. Genomic DNA was extracted from pools of third-stage larvae (L3) (n = 40) during trials, before and after treatment, and pools of adult male Haemonchus spp. (n = 18) from abattoirs. The polymorphisms F167Y, E198A and F200Y in isotype 1 β-tubulin genes of H. contortus and H. placei were analysed using Sanger and pyrosequencing. Results Prevalence of gastro-intestinal helminths in cattle was 71% (313/443). Reduced albendazole faecal egg count reduction efficacy was detected in three study areas: Nyala (93.7%), Rehed Al-Birdi (89.7%) and Tulus (88.2%). In the EHT, EC50 values of these study areas ranged between 0.032 and 0.037 µg/ml thiabendazole. Genus-specific PCRs detected the genera Haemonchus, Trichostrongylus and Cooperia in L3 samples collected after albendazole treatment. Sanger sequencing followed by pyrosequencing assays did not detect elevated frequencies of known BZ resistance-associated alleles in codon F167Y, E198A and F200Y in isotype 1 β-tubulin gene of H. placei (≤ 11.38%). However, polymorphisms were detected in H. contortus and in samples with mixed infections with H. contortus and H. placei at codon 198, including E198L (16/58), E198V (2/58) and potentially E198Stop (1/58). All pooled L3 samples post-albendazole treatment (n = 13) were identified as H. contortus with an E198L substitution at codon 198. Conclusions To the knowledge of the authors, this is the first report of reduced albendazole efficacy in cattle in Sudan and is the first study describing an E198L substitution in phenotypically BZ-resistant nematodes collected from cattle.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1193
Author(s):  
Muhammad Sohail Saddiq ◽  
Shahid Iqbal ◽  
Muhammad Bilal Hafeez ◽  
Amir M. H. Ibrahim ◽  
Ali Raza ◽  
...  

Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the growth of cereals, including wheat (Triticum aestivum L.). In this study, we determined the effects of salinity on five spring and five winter wheat genotypes seedlings. We evaluated the salt stress on root and shoot growth attributes, i.e., root length (RL), shoot length (SL), the relative growth rate of root length (RGR-RL), and shoot length (RGR-SL). The ionic content of the leaves was also measured. Physiological traits were also assessed, including stomatal conductance (gs), chlorophyll content index (CCI), and light-adapted leaf chlorophyll fluorescence, i.e., the quantum yield of photosystem II (Fv′/Fm′) and instantaneous chlorophyll fluorescence (Ft). Physiological and growth performance under salt stress (0, 100, and 200 mol/L) were explored at the seedling stage. The analysis showed that spring wheat accumulated low Na+ and high K+ in leaf blades compared with winter wheat. Among the genotypes, Sakha 8, S-24, W4909, and W4910 performed better and had improved physiological attributes (gs, Fv′/Fm′, and Ft) and seedling growth traits (RL, SL, RGR-SL, and RGR-RL), which were strongly linked with proper Na+ and K+ discrimination in leaves and the CCI in leaves. The identified genotypes could represent valuable resources for genetic improvement programs to provide a greater understanding of plant tolerance to salt stress.


Nematology ◽  
2016 ◽  
Vol 18 (8) ◽  
pp. 879-903 ◽  
Author(s):  
Thomas O. Powers ◽  
Peter Mullin ◽  
Rebecca Higgins ◽  
Timothy Harris ◽  
Kirsten S. Powers

A new species of Mesocriconema and a unique assemblage of plant-parasitic nematodes was discovered in a heath bald atop Brushy Mountain in Great Smoky Mountains National Park. Mesocriconema ericaceum n. sp., a species with males, superficially resembles M. xenoplax. DNA barcoding with the mitochondrial COI gene provided evidence of the new species as a distinct lineage. SEM revealed significant variability in arrangement of labial submedian lobes, plates, and anterior and posterior annuli. Three other nematodes in the family Criconematidae were characterised from the heath bald. Ogma seymouri, when analysed by statistical parsimony, established connections with isolates from north-eastern Atlantic coastal and north-western Pacific coastal wet forests. Criconema loofi has a southern Gulf Coast distribution associated with boggy soils. Criconema cf. acriculum is known from northern coastal forests of California. Understanding linkages between these species and their distribution may lead to the broader development of a terrestrial soil nematode biogeography.


Sign in / Sign up

Export Citation Format

Share Document