A cilia-mediated environmental input induces solitary behaviour in Caenorhabditis elegans and Pristionchus pacificus nematodes

Nematology ◽  
2018 ◽  
Vol 20 (3) ◽  
pp. 201-209 ◽  
Author(s):  
Eduardo Moreno ◽  
Ralf J. Sommer

Nematodes respond to a multitude of environmental cues. For example, the social behaviours clumping and bordering were described as a mechanism of hyperoxia avoidance in Caenorhabditis elegans and Pristionchus pacificus. A recent study in P. pacificus revealed a novel regulatory pathway that inhibits social behaviour in a response to an as yet unknown environmental cue. This environmental signal is recognised by ciliated neurons, as mutants defective in intraflagellar transport (IFT) proteins display social behaviours. The IFT machinery represents a large protein complex and many mutants in genes encoding IFT proteins are available in C. elegans. However, social phenotypes in C. elegans IFT mutants have never been reported. Here, we examined 15 previously isolated C. elegans IFT mutants and found that most of them showed strong social behaviour. These findings indicate conservation in the inhibitory mechanism of social behaviour between P. pacificus and C. elegans.

2016 ◽  
Vol 283 (1825) ◽  
pp. 20152263 ◽  
Author(s):  
Eduardo Moreno ◽  
Angela McGaughran ◽  
Christian Rödelsperger ◽  
Manuel Zimmer ◽  
Ralf J. Sommer

Wild isolates of the nematode Caenorhabditis elegans perform social behaviours, namely clumping and bordering, to avoid hyperoxia under laboratory conditions. In contrast, the laboratory reference strain N2 has acquired a solitary behaviour in the laboratory, related to a gain-of-function variant in the neuropeptide Y-like receptor NPR-1. Here, we study the evolution and natural variation of clumping and bordering behaviours in Pristionchus pacificus nematodes in a natural context, using strains collected from 22 to 2400 metres above sea level on La Réunion Island. Through the analysis of 106 wild isolates, we show that the majority of strains display a solitary behaviour similar to C. elegans N2, whereas social behaviours are predominantly seen in strains that inhabit high-altitude locations. We show experimentally that P. pacificus social strains perform clumping and bordering to avoid hyperoxic conditions in the laboratory, suggesting that social strains may have adapted to or evolved a preference for the lower relative oxygen levels available at high altitude in nature. In contrast to C. elegans , clumping and bordering in P. pacificus do not correlate with locomotive behaviours in response to changes in oxygen conditions. Furthermore, QTL analysis indicates clumping and bordering to represent complex quantitative traits. Thus, clumping and bordering behaviours represent an example of phenotypic convergence with a different evolutionary history and distinct genetic control in both nematode species.


2008 ◽  
Vol 180 (5) ◽  
pp. 973-988 ◽  
Author(s):  
Andrew R. Jauregui ◽  
Ken C.Q. Nguyen ◽  
David H. Hall ◽  
Maureen M. Barr

Nephronophthisis (NPHP) is the most common genetic cause of end-stage renal disease in children and young adults. In Chlamydomonas reinhardtii, Caenorhabditis elegans, and mammals, the NPHP1 and NPHP4 gene products nephrocystin-1 and nephrocystin-4 localize to basal bodies or ciliary transition zones (TZs), but their function in this location remains unknown. We show here that loss of C. elegans NPHP-1 and NPHP-4 from TZs is tolerated in developing cilia but causes changes in localization of specific ciliary components and a broad range of subtle axonemal ultrastructural defects. In amphid channel cilia, nphp-4 mutations cause B tubule defects that further disrupt intraflagellar transport (IFT). We propose that NPHP-1 and NPHP-4 act globally at the TZ to regulate ciliary access of the IFT machinery, axonemal structural components, and signaling molecules, and that perturbing this balance results in cell type–specific phenotypes.


2020 ◽  
Author(s):  
Helena Rawsthorne ◽  
Fernando Calahorro ◽  
Emily Feist ◽  
Lindy Holden-Dye ◽  
Vincent O’Connor ◽  
...  

Abstract Autism spectrum disorder (ASD) is characterized by a triad of behavioural impairments including social behaviour. Neuroligin, a trans-synaptic adhesion molecule, has emerged as a penetrant genetic determinant of behavioural traits that signature the neuroatypical behaviours of autism. However, the function of neuroligin in social circuitry and the impact of genetic variation to this gene is not fully understood. Indeed, in animal studies designed to model autism, there remains controversy regarding the role of neuroligin dysfunction in the expression of disrupted social behaviours. The model organism, Caenorhabditis elegans, offers an informative experimental platform to investigate the impact of genetic variants on social behaviour. In a number of paradigms, it has been shown that inter-organismal communication by chemical cues regulates C. elegans social behaviour. We utilize this social behaviour to investigate the effect of autism-associated genetic variants within the social domain of the research domain criteria. We have identified neuroligin as an important regulator of social behaviour and segregate the importance of this gene to the recognition and/or processing of social cues. We also use CRISPR/Cas9 to edit an R-C mutation that mimics a highly penetrant human mutation associated with autism. C. elegans carrying this mutation phenocopy the behavioural dysfunction of a C. elegans neuroligin null mutant, thus confirming its significance in the regulation of animal social biology. This highlights that quantitative behaviour and precision genetic intervention can be used to manipulate discrete social circuits of the worm to provide further insight into complex social behaviour.


2010 ◽  
Vol 432 (3) ◽  
pp. 505-516 ◽  
Author(s):  
Steven T. Laing ◽  
Al Ivens ◽  
Roz Laing ◽  
Sai Ravikumar ◽  
Victoria Butler ◽  
...  

Knowledge of how anthelmintics are metabolized and excreted in nematodes is an integral part of understanding the factors that determine their potency, spectrum of activity and for investigating mechanisms of resistance. Although there is remarkably little information on these processes in nematodes, it is often suggested that they are of minimal importance for the major anthelmintic drugs. Consequently, we have investigated how the model nematode Caenorhabditis elegans responds to and metabolizes albendazole, one of the most important anthelmintic drugs for human and animal use. Using a mutant strain lacking the β-tubulin drug target to minimize generalized stress responses, we show that the transcriptional response is dominated by genes encoding XMEs (xenobiotic-metabolizing enzymes), particularly cytochrome P450s and UGTs (UDP-glucuronosyl transferases). The most highly induced genes are predominantly expressed in the worm intestine, supporting their role in drug metabolism. HPLC-MS/MS revealed the production of two novel glucoside metabolites in C. elegans identifying a major difference in the biotransformation of this drug between nematodes and mammals. This is the first demonstration of metabolism of a therapeutic anthelmintic in C. elegans and provides a framework for its use to functionally investigate nematode anthelmintic metabolism.


2010 ◽  
Vol 21 (6) ◽  
pp. 956-969 ◽  
Author(s):  
Iryna O. Zubovych ◽  
Sarah Straud ◽  
Michael G. Roth

In a previous genetic screen for Caenorhabditis elegans mutants that survive in the presence of an antimitotic drug, hemiasterlin, we identified eight strong mutants. Two of these were found to be resistant to multiple toxins, and in one of these we identified a missense mutation in phb-2, which encodes the mitochondrial protein prohibitin 2. Here we identify two additional mutations that confer drug resistance, spg-7 and har-1, also in genes encoding mitochondrial proteins. Other mitochondrial mutants, isp-1, eat-3, and clk-1, were also found to be drug-resistant. Respiratory complex inhibitors, FCCP and oligomycin, and a producer of reactive oxygen species (ROS), paraquat, all rescued wild-type worms from hemiasterlin toxicity. Worms lacking mitochondrial superoxide dismutase (MnSOD) were modestly drug-resistant, and elimination of MnSOD in the phb-2, har-1, and spg-7 mutants enhanced resistance. The antioxidant N-acetyl-l-cysteine prevented mitochondrial inhibitors from rescuing wild-type worms from hemiasterlin and sensitized mutants to the toxin, suggesting that a mechanism sensitive to ROS is necessary to trigger drug resistance in C. elegans. Using genetics, we show that this drug resistance requires pkc-1, the C. elegans ortholog of human PKCε.


2019 ◽  
Author(s):  
Jérôme Belougne ◽  
Igor Ozerov ◽  
Céline Caillard ◽  
Frédéric Bedu ◽  
Jonathan J. Ewbank

ABSTRACTUnderstanding how animals respond to injury and how wounds heal remains a challenge. These questions can be addressed using genetically tractable animals, including the nematode Caenorhabditis elegans. Given its small size, the current methods for inflicting wounds in a controlled manner are demanding. To facilitate and accelerate the procedure, we fabricated regular arrays of pyramidal features (“pins”) sharp enough to pierce the tough nematode cuticle. The pyramids were made from monocrystalline silicon wafers that were micro-structured using optical lithography and alkaline wet etching. The fabrication protocol and the geometry of the pins, determined by electron microscopy, are described in detail. Upon wounding, C. elegans expresses genes encoding antimicrobial peptides. A comparison of the induction of antimicrobial peptide gene expression using traditional needles and the pin arrays demonstrates the utility of this new method.


1994 ◽  
Vol 14 (1) ◽  
pp. 484-491
Author(s):  
M MacMorris ◽  
J Spieth ◽  
C Madej ◽  
K Lea ◽  
T Blumenthal

The Caenorhabditis elegans vit genes, encoding vitellogenins, are abundantly expressed in the adult hermaphrodite intestine. Two repeated elements, vit promoter element 1 (VPE1 [TGTCAAT]) and VPE2 (CTGATAA), have been identified in the 5' flanking DNA of each of the vit genes of C. elegans and Caenorhabditis briggsae. These elements have previously been shown to be needed for correctly regulated expression of a vit-2/vit-6 fusion gene in low-copy-number, integrated transgenes. Here we extend the analysis of the function of VPE1 and VPE2 by using transgenic lines carrying large, extrachromosomal arrays of the test genes. The results validate the use of such arrays for transgenic analysis of gene regulation in C. elegans, by confirming previous findings showing that the VPE1 at -45 and both VPE2s are sites of activation. Additional experiments now indicate that when the -45 VPE1 is inverted or replaced by a VPE2, nearly total loss of promoter function results, suggesting that the highly conserved -45 VPE1 plays a unique role in vit-2 promoter function. In contrast, single mutations eliminating the three upstream VPE1s are without effect. However, in combination in double and triple mutants, these upstream VPE1 mutations cause drastic reductions in expression levels. The -150 VPE2 can be replaced by a XhoI site (CTCGAG), and the -90 VPE2 can be eliminated, as long as the overlapping VPE1 is left intact, but when these two replacements are combined, activity is lost. Thus, the promoter must have at least one VPE2 and it must have at least two VPE1s, one at -45 and one additional upstream element.


2002 ◽  
Vol 361 (2) ◽  
pp. 221-230 ◽  
Author(s):  
Yusuke KATO ◽  
Tomoyasu AIZAWA ◽  
Hirokazu HOSHINO ◽  
Keiichi KAWANO ◽  
Katsutoshi NITTA ◽  
...  

Two genes encoding the ASABF (Ascarissuumantibacterial factor)-type antimicrobial peptide, abf-1 and abf-2, were identified in Caenorhabditis elegans. Recombinant ABF-2 exhibited potent microbicidal activity against Gram-positive and Gram-negative bacteria, and yeasts. The tissue-specific distribution estimated by immunofluorescence staining and transgenic analysis of a gfp fusion gene (where GFP corresponds to green fluorescent protein) suggested that ABF-2 contributes to surface defence in the pharynx. abf-1 contains a single intron at a conserved position, suggesting that asabf and abf originated from a common ancestor. Both transcripts for abf-1 and abf-2 were detected as two distinct forms, i.e. spliced leader (SL)1-trans-spliced with a long 5′-untranslated region (UTR) and SL-less with a short 5′-UTR. A polycistronic precursor RNA encoding ABF-1 and ABF-2 was detected, suggesting that these genes form an operon. An ‘opportunistic operon’ model for regulation of abf genes, including the generation of short SL-less transcripts, is proposed. In conclusion, C. elegans should have an immune defence system due to the antimicrobial peptides. C. elegans can be a novel model for innate immunity. Furthermore, the combination of biochemical identification in Ascaris suum and homologue hunting in C. elegans should be a powerful method of finding rapidly evolved proteins, such as some immune-related molecules in C. elegans.


2006 ◽  
Vol 34 (5) ◽  
pp. 942-948 ◽  
Author(s):  
J. Dillon ◽  
N.A. Hopper ◽  
L. Holden-Dye ◽  
V. O'Connor

mGluRs (metabotropic glutamate receptors) are G-protein-coupled receptors that play an important neuromodulatory role in the brain. Glutamatergic transmission itself plays a fundamental role in the simple nervous system of the model organism Caenorhabditis elegans, but little is known about the contribution made by mGluR signalling. The sequenced genome of C. elegans predicts three distinct genes, mgl-1, mgl-2 and mgl-3 (designated Y4C6A.2). We have used in silico and cDNA analyses to investigate the genes encoding mgls. Our results indicate that mgl genes constitute a gene family made up of three distinct subclasses of receptor. Our transcript analysis highlights potential for complex gene regulation with respect to both expression and splicing. Further, we identify that the predicted proteins encoded by mgls harbour structural motifs that are likely to regulate function. Taken together, this molecular characterization provides a platform to further investigate mGluR function in the model organism C. elegans.


2014 ◽  
Vol 74 (3) ◽  
pp. 607-611 ◽  
Author(s):  
G Valença-Silva ◽  
FG Maciel ◽  
RL Zaganini ◽  
AS Lucindo ◽  
S Caramaschi ◽  
...  

In New World primates, mixed-species troops have been reported. Here, we analysed the performance of affiliative and agonistic behaviours of Callithrix jacchus and Callithrix penicillata living in mixed groups. For this purpose, we recorded the interaction of the individuals from two groups located in Bauru city, in the state of São Paulo (Brazil). Our data show that in both groups, affiliative behaviours appeared more frequently than agonistic ones. We concluded that there is cohesion inside the mixed-species troops observed. We suggest that a deeper knowledge about the social behaviour of mixed-species troop species certainly may be useful in projects linked with the management of the impact caused by them.


Sign in / Sign up

Export Citation Format

Share Document