Accurate Analytical Model of Equivalent Dielectric Constant for Rain Medium

2006 ◽  
Vol 20 (13) ◽  
pp. 1775-1783 ◽  
Author(s):  
S. H. Gong ◽  
J. Y. Huang
Author(s):  
K. A. Cook-Chennault ◽  
S. Banerjee

An analytical expression for prediction of the effective dielectric constant of a three phase 0-3-0 ferroelectric composite is presented. The analytical results are verified with the experimental results from Nan et al [1]. We extend the analytical model, so that the influence of the shape of the third phase inclusion, on the effective dielectric constant of the composite, can be investigated. The results indicate that the dielectric constant increases ∼7 times, when the aspect ratio of the conductive inclusion is increased from 1 (sphere) to 10 (spheroid). The analytical predictions compare favorably with the experimental values.


Author(s):  
S. Banerjee ◽  
K. A. Cook-Chennault

An analytical expression for prediction of the effective dielectric constant of a three phase 0-3-0 ferroelectric composite is presented. The analytical results are verified with the experimental results from Nan et al. (2002, “Three-Phase Magnetoelectric Composite of Piezoelectric Ceramics, Rare-Earth Iron Alloys, and Polymer,” Appl. Phys. Lett., 81(20), p. 3831). The analytical model is extended to include the shape of a third phase inclusion to examine the influence of the shape (of the inclusion) on the effective dielectric constant of the composite. The dielectric constant increases as much as seven times when the aspect ratio of the conducting inclusion particle is increased from 1 (sphere) to 10 (spheroid). A comparison of the analytical predictions with the experimental values, which indicate that the increase in aspect ratio of the inclusions has a significant effect on the overall dielectric constant of the composite.


Author(s):  
E. L. Hall ◽  
A. Mogro-Campero ◽  
N. Lewis ◽  
L. G. Turner

There have been a large number of recent studies of the growth of Y-Ba-Cu-O thin films, and these studies have employed a variety of substrates and growth techniques. To date, the highest values of Tc and Jc have been found for films grown by sputtering or coevaporation on single-crystal SrTiO3 substrates, which produces a uniaxially-aligned film with the YBa2Cu3Ox c-axis normal to the film plane. Multilayer growth of films on the same substrate produces a triaxially-aligned film (regions of the film have their c-axis parallel to each of the three substrate <100> directions) with lower values of Jc. Growth of films on a variety of other polycrystalline or amorphous substrates produces randomly-oriented polycrystalline films with low Jc. Although single-crystal SrTiO3 thus produces the best results, this substrate material has a number of undesireable characteristics relative to electronic applications, including very high dielectric constant and a high loss tangent at microwave frequencies. Recently, Simon et al. have shown that LaAlO3 could be used as a substrate for YBaCuO film growth. This substrate is essentially a cubic perovskite with a lattice parameter of 0.3792nm (it has a slight rhombohedral distortion at room temperature) and this material exhibits much lower dielectric constant and microwave loss tangents than SrTiO3. It is also interesting from a film growth standpoint since it has a slightly smaller lattice parameter than YBa2Cu3Ox (a=0.382nm, b=c/3=0.389nm), while SrTiO3 is slightly larger (a=0.3905nm).


2020 ◽  
Vol 8 (32) ◽  
pp. 16661-16668
Author(s):  
Huayao Tu ◽  
Shouzhi Wang ◽  
Hehe Jiang ◽  
Zhenyan Liang ◽  
Dong Shi ◽  
...  

The carbon fiber/metal oxide/metal oxynitride layer sandwich structure is constructed in the electrode to form a mini-plate capacitor. High dielectric constant metal oxides act as dielectric to increase their capacitance.


Author(s):  
Peng Wang ◽  
Zhongbin Pan ◽  
Weilin Wang ◽  
Jianxu Hu ◽  
Jinjun Liu ◽  
...  

High-performance electrostatic capacitors are in urgent demand owing to the rapidly development of advanced power electronic applications. However, polymer-based composite films with both high breakdown strength (Eb) and dielectric constant...


Sign in / Sign up

Export Citation Format

Share Document