Life-history strategies of native and introduced fish species from a Mediterranean lake

2003 ◽  
Vol 53 (1) ◽  
pp. 47-57 ◽  
Author(s):  
◽  

AbstractSeven life-history traits were used to describe the life-history strategies of 12 native and introduced species from a permanent lake in Spain. Multivariate analysis identified a continuum of life-history patterns between two extremes: 1) species with one or few spawnings per year, short breeding season, long generation time, large size, high fecundity, and no parental care. This set of life-history traits corresponded to the periodic life-history strategy described by Winemiller (1989) and Winemiller and Rose (1992); and 2) species with multiple spawnings per year, prolonged breeding season, short generation time, small size, low fecundity, parental care, and small to medium size of eggs. This association of life-history traits corresponded to the opportunistic life-history strategy described by Winemiller (1989) and Winemiller and Rose (1992). It seems that there were no apparent differences in life-history strategies between native and introduced species in Lake Banyoles. Native and introduced species were found among periodic and opportunistic strategists. Observed differences in the success of native and introduced species with comparable life-history strategies seems to suggest that the success of fish species in Lake Banyoles could not be explained on the basis of life-history features. Nevertheless, it seems that successful invasive species in Lake Banyoles display a suite of traits such as high fecundity, late maturity, and large body size. These characteristics may perhaps be viewed as biological predictors of successful invaders but more information is needed about life-history features of successful introduced species from other ecosystems.

2018 ◽  
Vol 66 (2) ◽  
pp. 605
Author(s):  
Diego Azevedo Zoccal Garcia ◽  
Alexandro Derly Augusto Costa ◽  
Fernanda Simões de Almeida ◽  
Andréa Bialetzki ◽  
Mário Luís Orsi

Fish diversity loss is threatened by the construction of dams as they prevent the regular natural dispersal among populations. Thus, conservation of key riverine habitats for fish reproduction may be essential for the recruitment of new native species of fish. The present study aimed to identify key habitats for fish spawning and early development in the Paranapanema River basin, as well as to determine the taxonomic composition, reproductive and life-history strategy, and to report spatial distribution of eggs, larvae and juveniles. The importance of lagoons, tributaries, and sub-tributaries was evaluated in the Paranapanema River basin between October 2012 and March 2013. Eggs and larvae samples were collected at dawn and dusk with conical plankton nets (0.5 mm mesh size), whereas juveniles were captured during the day with seine and sieve (0.5 cm mesh size). A total of 547 eggs, 904 larvae and 1 228 juveniles were captured. We observed that 2 larvae and 288 juveniles of non-migratory species, parental care, and equilibrium life-history strategy, predominated in lagoons and tributaries. On the other hand, 13 larvae and 60 juveniles of short migratory distance, no parental care, and periodic life-history strategy predominated in sub-tributaries. The highest densities of eggs were recorded in tributaries and sub-tributaries (Tukey’s test, P = 0.001 and P = 0.03, respectively), and the highest densities of larvae were recorded for lagoons and tributaries (P = 0.005 and P = 0.0001, respectively). Captures of eggs and larvae were higher at night; while the highest catches per unit effort of juveniles were recorded for tributaries and sub-tributaries. Fish species that adopt different life-history strategies can use diverse types of habitats during the early stages. Lagoons, tributaries and sub-tributaries of the Paranapanema River play different roles in the reproductive success of fish fauna in a heavily modified basin. The preservation of spawning and nursery areas trapped between reservoirs is necessary for Neotropical fish species recruitment and survival. Rev. Biol. Trop. 66(2): 605-621. Epub 2018 June 01. 


1992 ◽  
Vol 49 (10) ◽  
pp. 2196-2218 ◽  
Author(s):  
Kirk O. Winemiller ◽  
Kenneth A. Rose

Interspecific patterns of fish life histories were evaluated in relation to several theoretical models of life-history evolution. Data were gathered for 216 North American fish species (57 families) to explore relationships among variables and to ordinate species. Multivariate tests, performed on freshwater, marine, and combined data matrices, repeatedly identified a gradient associating later-maturing fishes with higher fecundity, small eggs, and few bouts of reproduction during a short spawning season and the opposite suite of traits with small fishes. A second strong gradient indicated positive associations between parental care, egg size, and extended breeding seasons. Phylogeny affected each variable, and some higher taxonomic groupings were associated with particular life-history strategies. High-fecundity characteristics tended to be associated with large species ranges in the marine environment. Age at maturation, adult growth rate, life span, and egg size positively correlated with anadromy. Parental care was inversely correlated with median latitude. A trilateral continuum based on essential trade-offs among three demographic variables predicts many of the correlations among life-history traits. This framework has implications for predicting population responses to diverse natural and anthropogenic disturbances and provides a basis for comparing responses of different species to the same disturbance.


Author(s):  
P.M. Félix ◽  
M.C.P. Amorim ◽  
T.J. Pereira ◽  
P.J. Fonseca ◽  
C. Sousa-Santos ◽  
...  

The Lusitanian toadfish,Halobatrachus didactylus, like other batrachoidids, is a benthic fish species with nesting behaviour during the breeding season. During this prolonged period it engages in mating activities and remains in the nest providing parental care. It is not known whether males feed while providing parental care but it is likely that their limited mobility may restrict their diet and influence their fitness. As a consequence, egg cannibalism could occur as a life-history strategy. The aim of the present study is to ascertain the feeding behaviour of nesting males, in comparison to mature non-nesting males, and to identify potential life-history traits related to egg cannibalism. Nest-holders were sampled from artificial nests placed in an intertidal area of the Tagus estuary, only exposed during spring low tides. The diet of nest-holders was compared with that of non-nesting mature males from the same area, captured by otter trawl. The present study demonstrates that despite their constrained mobility nest-holders feed during the breeding season, although in a more opportunistic fashion than non-nesting males. Nest-holders showed a generalist feeding behaviour, with a more heterogeneous diet. Egg cannibalism was not related to male condition, paternity or brood size but showed a higher incidence early in the season when water temperatures were lower. The results suggest a possible seasonal trade-off strategy between care and energy recovery, triggered by environmental factors, where under unfavourable conditions to sustain viable eggs the male may recover energy by eating eggs, thus benefiting future reproductive success, later in the season.


2010 ◽  
Vol 277 (1697) ◽  
pp. 3203-3212 ◽  
Author(s):  
Michaela Hau ◽  
Robert E. Ricklefs ◽  
Martin Wikelski ◽  
Kelly A. Lee ◽  
Jeffrey D. Brawn

Steroid hormones have similar functions across vertebrates, but circulating concentrations can vary dramatically among species. We examined the hypothesis that variation in titres of corticosterone (Cort) and testosterone (T) is related to life-history traits of avian species. We predicted that Cort would reach higher levels under stress in species with higher annual adult survival rates since Cort is thought to promote physiological and behavioural responses that reduce risk to the individual. Conversely, we predicted that peak T during the breeding season would be higher in short-lived species with high mating effort as this hormone is known to promote male fecundity traits. We quantified circulating hormone concentrations and key life-history traits (annual adult survival rate, breeding season length, body mass) in males of free-living bird species during the breeding season at a temperate site (northern USA) and a tropical site (central Panama). We analysed our original data by themselves, and also combined with published data on passerine birds to enhance sample size. In both approaches, variation in baseline Cort (Cort0) among species was inversely related to breeding season length and body mass. Stress-induced corticosterone (MaxCort) also varied inversely with body mass and, as predicted, also varied positively with annual adult survival rates. Furthermore, species from drier and colder environments exhibited lower MaxCort than mesic and tropical species; T was lowest in species from tropical environments. These findings suggest that Cort0, MaxCort and T modulate key vertebrate life-history responses to the environment, with Cort0 supporting energetically demanding processes, MaxCort promoting survival and T being related to mating success.


2020 ◽  
Author(s):  
Rebecca Sear

Interest in incorporating life history research from evolutionary biology into the human sciences has grown rapidly in recent years. Two core features of this research have the potential to prove valuable in strengthening theoretical frameworks in the health and social sciences: the idea that these is a fundamental trade-off between reproduction and health; and that environmental influences are important in determining individual life histories. For example, the idea that mortality risk in the environment shifts individuals along a ‘fast-slow continuum’ of ‘life history strategy’ is now popular in the evolutionary human sciences. In biology, ‘fast’ life history strategists prioritise reproduction over health so that individuals grow quickly, reproduce early and often, and suffer a rapid deterioration in health and relatively early death; ‘slow’ strategists start reproducing later, have fewer offspring, and die at an older age. Evolutionary human scientists tend to assume that, along with these life history outcomes, several behavioural traits, such as parenting, mating and risk-taking behaviour and, in the most expansive version, a whole suite of psychological and personality traits also cluster together into ‘fast’ and ‘slow’ life histories. Here, I review the different approaches to life history strategies from evolutionary anthropologists, developmental psychologists and evolutionary psychologists, in order to assess the theoretical and empirical evidence for human ‘life history strategies’. While there is precedent in biology for the argument that some behavioural traits, notably risk-taking behaviour, may be linked in predictable ways with life history outcomes, there is relatively little theoretical or empirical justification for including a very wide range of behavioural traits in a ‘life history strategy’. Given the diversity and lack of consistency in this human life history literature, I then make recommendations for improving its usefulness: 1) greater clarity over terminology, so that a distinction is made between life history outcomes such as age at maturity, first birth and death, and behavioural traits which may be associated with life history outcomes but are not life history traits themselves; 2) more empirical data on linkages between life history traits, behavioural traits and the environment, including the underlying mechanisms which generate these linkages; 3) more empirical work on life history strategies in a much broader range of populations than has so far been studied. Such a research programme on human life history has the potential to produce valuable insights for the health and social sciences, not least because of its interest in environmental influences on health, reproduction and behaviour.


2010 ◽  
Vol 67 (8) ◽  
pp. 1640-1649 ◽  
Author(s):  
Graham D. Sherwood ◽  
Jonathan H. Grabowski

Abstract Sherwood, G. D., and Grabowski, J. H. 2010. Exploring the life-history implications of colour variation in offshore Gulf of Maine cod (Gadus morhua). – ICES Journal of Marine Science, 67: 1640–1649. The evolution of alternative life-history strategies in fish has largely been overlooked by fisheries managers, although differences in the biology of life-history variants can have important implications for the scale and productivity of fisheries. Cod display strikingly variable colouration in the Gulf of Maine, with red- and olive-coloured cod found in close sympatry. Colour types from Cashes Ledge, a shallow, offshore (∼100 km) feature, are examined to see whether they differ in key life-history traits including diet, depth distribution, growth, and body morphology. Red cod consumed significantly more crabs, lobsters, and demersal fish, whereas olive cod consumed more shrimp. Stable carbon isotope signatures (δ13C) varied significantly among colour types, but are thought to reflect baseline differences in δ13C at Cashes Ledge (potentially useful for residence estimates). Red cod were confined to a small area of shallow water (<20 m) and were significantly smaller at age than olive cod. Body shape was used to classify colour types correctly with 84% accuracy; red cod had shorter snouts, deeper bodies, and more slender tails than olive cod. Collectively, the results suggest that red cod are resident at Cashes Ledge and represent a life-history strategy distinct from olive cod.


2021 ◽  
Vol 12 ◽  
Author(s):  
Edward Umberto Serghi ◽  
Vasilis Kokkoris ◽  
Calvin Cornell ◽  
Jeremy Dettman ◽  
Franck Stefani ◽  
...  

Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts that have the potential to improve crop yield. These multinucleate organisms are either “homokaryotic” or “dikaryotic”. In AMF dikaryons, thousands of nuclei originating from two parental strains coexist in the same cytoplasm. In other fungi, homokaryotic and dikaryotic strains show distinct life history traits (LHTs), such as variation in growth rates and fitness. However, how such traits compare between dikaryons and homokaryons of AMF is unknown. To address this, we measured 20 LHT of four dikaryons and five homokaryons of the model fungus Rhizophagus irregularis across root organ cultures of three host plants (carrot, chicory, and tobacco). Our analyses show that dikaryons have clearly distinct life history strategies (LHSs) compared to homokaryons. In particular, spores of homokaryons germinate faster and to a higher proportion than dikaryons, whereas dikaryons grow significantly faster and create a more complex hyphal network irrespective of host plant species. Our study links AMF nuclear status with key LHT with possible implications for mycorrhizal symbiotic functioning.


All ecosystems require constituent species to survive against a backcloth of biotic and abiotic scenery. How this scenery shapes the life-history strategies of the players and how they in turn shape the scenery are important themes of the play of life. Species surviving in temperate and Arctic shelf seas do so against a scenery dominated by seasonal changes in the size-spectrum of other players. Successful survival in such an environment requires species to ride the big wave of annual productivity as it rolls through the extended size spectrum from phytoplankton to large fish. This wave flattens and broadens as it moves towards higher sizes. We speculate that in a seasonal shelf seas environment the wave shape is such that the Sheldon-Sutcliffe spectrum of equal biomass per log size interval is approximately true as an annual average although it may not be true at any particular moment in the year. Such spectra are structured by biomass being moved up the size spectrum mainly by predation processes, with growth of individuals being a second order process. However, the problem for an individual is to grow up through a size spectrum from its size at birth to its size at reproduction. Hence species need to find survival paths through the fluctuating scenery. This scenery is composed of the biomass of the prey, that of animals of a similar size, and larger predators. The paths followed dictate the life-history strategies of the species. This central problem for sea dwellers in temperate and Arctic shelf seas generates a broad similarity in the choice of life-history strategy for many key players over quite wide geographic areas of the globe. In these seas, strategies of high fecundity, high mortality and high growth rate are particularly common while strategies of low fecundity and parental care are rare for much of the size range. These seas also seem to favour longer trophic chains than terrestrial systems and either several generations per year or multiannual life cycles rather than annual cycles.


2018 ◽  
Author(s):  
Amber W. Walters ◽  
Melinda K. Matthews ◽  
Rachel Hughes ◽  
Jaanna Malcolm ◽  
Seth Rudman ◽  
...  

AbstractOrganismal life history traits are ideally adapted to local environments when an organism has a fitness advantage in one location relative to conspecifics from other geographies. Local adaptation has been best studied across, for example, latitudinal gradients, where organisms may tradeoff between investment in traits that maximize one, but not both, fitness components of somatic maintenance or reproductive output in the context of finite environmental resources. Latitudinal gradients in life history strategies are traditionally attributed to environmentally mediated selection on an animal’s genotype, without any consideration of the possible impact of associated microorganisms (‘microbiota’) on life history traits. Here we show that inDrosophila melanogaster, a key organism for studying local adaptation and life history strategies, associated microorganisms can drive life history variation. First, we reveal that an isogenic fly line reared with different bacteria vary the investment in early reproduction versus somatic maintenance, with little resultant variation in lifetime fitness. Next, we show that in wildDrosophilathe abundance of these same bacteria was correlated with the latitude and life history strategy of the flies, and bacterial abundance was driven at least in part by host genetic selection. Finally, by eliminating or manipulating the microbiota of fly lines collected across a latitudinal gradient, we reveal that host genotype contributes to latitude-specific life history traits independent of the microbiota; but that the microbiota can override these host genetic adaptations. Taken together, these findings establish the microbiota as an essential consideration in local adaptation and life history evolution.Significance statementExplanations of local adaptation have historically focused on how animal genotypes respond to environmental selection. Although the impact of variation in host life histories on the composition of the microbiota has been investigated for many associations, the scale and pattern of microbial effects on host life history strategy are largely unknown. Here we demonstrate in the fruit flyDrosophila melanogasterthat microbiota effects on host life history strategy in the laboratory are matched by patterns of microbiota composition in wild host populations. In particular, microbiota composition varies with latitude and the effects of the microbiota on life history traits are greater than host genetic adaptations. Together, these findings demonstrate that the microbiota plays an important role in local adaptation.


2019 ◽  
Author(s):  
Gretchen F. Wagner ◽  
Emeline Mourocq ◽  
Michael Griesser

Biparental care systems are a valuable model to examine conflict, cooperation, and coordination between unrelated individuals, as the product of the interactions between the parents influences the fitness of both individuals. A common experimental technique for testing coordinated responses to changes in the costs of parental care is to temporarily handicap one parent, inducing a higher cost of providing care. However, dissimilarity in experimental designs of these studies has hindered interspecific comparisons of the patterns of cost distribution between parents and offspring. Here we apply a comparative experimental approach by handicapping a parent at nests of five bird species using the same experimental treatment. In some species, a decrease in care by a handicapped parent was compensated by its partner, while in others the increased costs of care were shunted to the offspring. Parental responses to an increased cost of care primarily depended on the total duration of care that offspring require. However, life history pace (i.e., adult survival and fecundity) did not influence parental decisions when faced with a higher cost of caring. Our study highlights that a greater attention to intergenerational trade-offs is warranted, particularly in species with a large burden of parental care. Moreover, we demonstrate that parental care decisions may be weighed more against physiological workload constraints than against future prospects of reproduction, supporting evidence that avian species may devote comparable amounts of energy into survival, regardless of life history strategy.


Sign in / Sign up

Export Citation Format

Share Document