L'OMOLOGIA RIVISITATA

Nuncius ◽  
2003 ◽  
Vol 18 (1) ◽  
pp. 167-200
Author(s):  
ALESSANDRO MINELLI

Abstracttitle SUMMARY /title Many different and even contrasting notions of homology have been proposed over two centuries of comparative biology, beginning with the initial reference to idealised archetypes, down to the current concepts based on derivation from a common ancestor, or on shared developmental pathways or genetic (more extensively, informational) background. Select anatomical features such as the patterns of innervation, or the expression patterns of genes putatively involved in key developmental events, e.g. the Hox genes, have been repeatedly suggested as the most reliable cues to homology. This confidence, however, rests on shaky ground and results are never certain. Recent work in comparative morphology and evolutionary developmental biology increasingly suggests the need to abandon the traditional all-or-nothing notion of homology, in favour of a more flexible, factorial or combinatorial approach. In this way it will be possible to accommodate within one broad comparative view, respectful of phylogeny and developmental biology alike, many disparate notions such as positional and special homology, serial homology and temporal serial homology. All statements of homology, however, will thus require adequate qualification of the context specifically taken in consideration and the criteria used to address the comparison. It remains to be seen, in the near future, how far the old concept of homology, now under the burden of so many and so different notions, will still be of use to comparative biology.

Author(s):  
Ron Amundson

Evolutionary developmental biology is the study of evolutionary change (called phylogeny) as it is revealed through the embryological development of individual organisms (called ontogeny). On this approach, the understanding of ontogeny contributes to our understanding of phylogeny, and vice versa. Evolutionary thinkers of the nineteenth century almost all held what may be called the core doctrine of evolutionary developmental biology: that in order to achieve a modification in the adult form, evolution must modify the embryological processes responsible for that form, so that an understanding of evolution requires an understanding of development. Evolutionary theory has no theoretical need for developmental views of evolution. Beginning around 1990 a series of discoveries and theoretical innovations in developmental genetics led to the reinvigoration of developmental approaches to evolution. Evolutionary developmental biology (‘evo-devo’ as it is now called) was inaugurated as a Division of the Society for Integrative and Comparative Biology in the year 2000.


2008 ◽  
Vol 11 (1) ◽  
pp. 100-102
Author(s):  
Peter C. M. Molenaar

AbstractEvolutionary developmental biology (evo–devo) has become an established field of research, especially since the spectacular results obtained in the 1990s regarding cross-species molecular homologies of (Hox) genes acting early during embryogenesis in insects, vertebrates, and beyond. Amundson summarizes some of these results, which justify a central assertion of evo–devo, namely that one must understand how bodies are built in order to understand how the process of building bodies can be changed, that is, how evolution can occur. But Amundson's book is not about these discoveries, but about the history of evo–devo.


2020 ◽  
Vol 27 ◽  
Author(s):  
Ji-Yeon Lee ◽  
Myoung Hee Kim

: HOX genes belong to the highly conserved homeobox superfamily, responsible for the regulation of various cellular processes that control cell homeostasis, from embryogenesis to carcinogenesis. The abnormal expression of HOX genes is observed in various cancers, including breast cancer; they act as oncogenes or as suppressors of cancer, according to context. In this review, we analyze HOX gene expression patterns in breast cancer and examine their relationship, based on the three-dimensional genome structure of the HOX locus. The presence of non-coding RNAs, embedded within the HOX cluster, and the role of these molecules in breast cancer have been reviewed. We further evaluate the characteristic activity of HOX protein in breast cancer and its therapeutic potential.


Author(s):  
Alan C. Love

Many researchers have argued that evolutionary developmental biology (evo-devo) constitutes a challenge to standard evolutionary theory, requiring the explicit inclusion of developmental processes that generate variation and attention to organismal form (rather than adaptive function). An analysis of these developmental-form challenges indicates that the primary concern is not the inclusion of specific content but the epistemic organization or structure of evolutionary theory. Proponents of developmental-form challenges favor moving their considerations to a more central location in evolutionary theorizing, in part because of a commitment to the value of mechanistic explanation. This chapter argues there are multiple legitimate structures for evolutionary theory, instead of a single, overarching or canonical organization, and different theory presentations can be understood as idealizations that serve different investigative and explanatory goals in evolutionary inquiry.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Angelica Miglioli ◽  
Laura Canesi ◽  
Isa D. L. Gomes ◽  
Michael Schubert ◽  
Rémi Dumollard

Nuclear Receptors (NRs) are a superfamily of transcription factors specific to metazoans that have the unique ability to directly translate the message of a signaling molecule into a transcriptional response. In vertebrates, NRs are pivotal players in countless processes of both embryonic and adult physiology, with embryonic development being one of the most dynamic periods of NR activity. Accumulating evidence suggests that NR signaling is also a major regulator of development in marine invertebrates, although ligands and transactivation dynamics are not necessarily conserved with respect to vertebrates. The explosion of genome sequencing projects and the interpretation of the resulting data in a phylogenetic context allowed significant progress toward an understanding of NR superfamily evolution, both in terms of molecular activities and developmental functions. In this context, marine invertebrates have been crucial for characterizing the ancestral states of NR-ligand interactions, further strengthening the importance of these organisms in the field of evolutionary developmental biology.


Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1449-1466 ◽  
Author(s):  
C.E. Nelson ◽  
B.A. Morgan ◽  
A.C. Burke ◽  
E. Laufer ◽  
E. DiMambro ◽  
...  

The vertebrate Hox genes have been shown to be important for patterning the primary and secondary axes of the developing vertebrate embryo. The function of these genes along the primary axis of the embryo has been generally interpreted in the context of positional specification and homeotic transformation of axial structures. The way in which these genes are expressed and function during the development of the secondary axes, particularly the limb, is less clear. In order to provide a reference for understanding the role of the Hox genes in limb patterning, we isolated clones of 23 Hox genes expressed during limb development, characterized their expression patterns and analyzed their regulation by the signalling centers which pattern the limb. The expression patterns of the Abd-B-related Hoxa and Hoxd genes have previously been partially characterized; however, our study reveals that these genes are expressed in patterns more dynamic and complex than generally appreciated, only transiently approximating simple, concentric, nested domains. Detailed analysis of these patterns suggests that the expression of each of the Hoxa and Hoxd genes is regulated in up to three independent phases. Each of these phases appears to be associated with the specification and patterning of one of the proximodistal segments of the limb (upper arm, lower arm and hand). Interestingly, in the last of these phases, the expression of the Hoxd genes violates the general rule of spatial and temporal colinearity of Hox gene expression with gene order along the chromosome. In contrast to the Abd-B-related Hoxa and Hoxd genes, which are expressed in both the fore and hind limbs, different sets of Hoxc genes are expressed in the two limbs. There is a correlation between the relative position of these genes along the chromosome and the axial level of the limb bud in which they are expressed. The more 3′ genes are expressed in the fore limb bud while the 5′ genes are expressed in the hind limb bud; intermediate genes are transcribed in both limbs. However, there is no clear correlation between the relative position of the genes along the chromosome and their expression domains within the limb. With the exception of Hoxc-11, which is transcribed in a posterior portion of the hind limb, Hoxc gene expression is restricted to the anterior/proximal portion of the limb bud. Importantly, comparison of the distributions of Hoxc-6 RNA and protein products reveals posttranscriptional regulation of this gene, suggesting that caution must be exercised in interpreting the functional significance of the RNA distribution of any of the vertebrate Hox genes. To understand the genesis of the complex patterns of Hox gene expression in the limb bud, we examined the propagation of Hox gene expression relative to cell proliferation. We find that shifts in Hox gene expression cannot be attributed to passive expansion due to cell proliferation. Rather, phase-specific Hox gene expression patterns appear to result from a context-dependent response of the limb mesoderm to Sonic hedgehog. Sonic hedgehog (the patterning signal from the Zone of Polarizing Activity) is known to be able to activate Hoxd gene expression in the limb. Although we find that Sonic hedgehog is capable of initiating and polarizing Hoxd gene expression during both of the latter two phases of Hox gene expression, the specific patterns induced are not determined by the signal, but depend upon the temporal context of the mesoderm receiving the signal. Misexpression of Sonic hedgehog also reveals that Hoxb-9, which is normally excluded from the posterior mesenchyme of the leg, is negatively regulated by Sonic hedgehog and that Hoxc-11, which is expressed in the posterior portion of the leg, is not affected by Sonic hedgehog and hence is not required to pattern the skeletal elements of the lower leg.


Sign in / Sign up

Export Citation Format

Share Document