‘Himadri’ and the Global Politics of Melting Ice: India’s Arctic Presence and the March Towards Global Governance

2013 ◽  
Vol 5 (1) ◽  
pp. 649-667
Author(s):  
Anuradha Nayak

Abstract The Arctic is witnessing major changes due to the melting and thinning of Arctic sea ice. This phenomenon resulted in exposure of hidden natural resources and opening of new navigational routes. The future would witness circumpolar states benefitting from these changes. However, it seems that non-circumpolar states would also be interested in participation and reaping benefits from the development process. Hence, they make their presence felt in the Arctic, through various activities which has geo-political impact. In this light, the article focuses on one of the non – circumpolar countries, India and its perspective stance. The article deliberates on the ramification of melting ice and the present Arctic system through the Arctic Council, the Svalbard treaty and an analysis of the Antarctic treaty system. The article concludes by proposing a perceived Arctic policy for India and a global governance model. The attempt is governance should focus on pan- Arctic issues rather than regional ones. Furthermore, it should encompass interests/rights of vested states, legal entities and other interested parties.

2020 ◽  
Vol 13 (3) ◽  
pp. 326-340
Author(s):  
Paulo Borba Casella ◽  
◽  
Maria Lagutina ◽  
Arthur Roberto Capella Giannattasio ◽  
◽  
...  

The current international legal regulation of the Arctic and Antarctica was organized during the second half of the XX century to establish an international public power over the two regions, the Arctic Council (AC) and the Antarctic Treaty System (ATS), which is characterized by Euro-American dominance. However, the rise of emerging countries at the beginning of the XXI century suggests a progressive redefinition of the structural balance of international power in favor of states not traditionally perceived as European and Western. This article examines the role of Brazil within the AC and the ATS to address various polar issues, even institutional ones. As a responsible country in the area of cooperation in science and technology in the oceans and polar regions in BRICS, Brazil appeals to its rich experience in Antarctica and declares its interest in joining the Arctic cooperation. For Brazil, participation in polar cooperation is a way to increase its role in global affairs and BRICS as a negotiating platform. It is seen in this context as a promising tool to achieve this goal. This article highlights new paths in the research agenda concerning interests and prospects of Brazilian agency in the polar regions.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Nicola Scafetta ◽  
Adriano Mazzarella

Here we study the Arctic and Antarctic sea-ice area records provided by the National Snow and Ice Data Center (NSIDC). These records reveal an opposite climatic behavior: since 1978 the Arctic sea-ice area index decreased, that is, the region has warmed, while the Antarctic sea-ice area index increased, that is, the region has cooled. During the last 7 years the Arctic sea-ice area has stabilized while the Antarctic sea-ice area has increased at a rate significantly higher than during the previous decades; that is, the sea-ice area of both regions has experienced a positive acceleration. This result is quite robust because it is confirmed by alternative temperature climate indices of the same regions. We also found that a significant 4-5-year natural oscillation characterizes the climate of these sea-ice polar areas. On the contrary, we found that the CMIP5 general circulation models have predicted significant warming in both polar sea regions and failed to reproduce the strong 4-5-year oscillation. Because the CMIP5 GCM simulations are inconsistent with the observations, we suggest that important natural mechanisms of climate change are missing in the models.


2010 ◽  
Vol 4 (1) ◽  
pp. 153-161 ◽  
Author(s):  
G. S. Dieckmann ◽  
G. Nehrke ◽  
C. Uhlig ◽  
J. Göttlicher ◽  
S. Gerland ◽  
...  

Abstract. We report for the first time on the discovery of calcium carbonate crystals as ikaite (CaCO3*6H2O) in sea ice from the Arctic (Kongsfjorden, Svalbard). This finding demonstrates that the precipitation of calcium carbonate during the freezing of sea ice is not restricted to the Antarctic, where it was observed for the first time in 2008. This finding is an important step in the quest to quantify its impact on the sea ice driven carbon cycle and should in the future enable improvement parametrization sea ice carbon models.


Polar Record ◽  
2015 ◽  
Vol 52 (2) ◽  
pp. 230-238 ◽  
Author(s):  
Oran R. Young

ABSTRACTThe Arctic and the Antarctic appear to be polar opposites with regard to many matters, including the systems of governance that have evolved in the two regions. Antarctica is demilitarised, closed to economic development, open to a wide range of scientific activities, and subject to strict environmental regulations under the terms of the legally binding Antarctic Treaty of 1959 along with several supplementary measures that together form the Antarctic Treaty System (ATS). The Arctic, by contrast, is a theatre of military operations, a site of largescale industrial activities, a homeland for sizable groups of indigenous peoples, and a focus of growing concern regarding the environmental impacts of human activities. The Arctic Council, the principal international body concerned with governance at the regional level, operates under the terms of a ministerial declaration that is not legally binding; it lacks the authority to make formal decisions about matters of current interest. Digging a little deeper, however, one turns up some illuminating similarities between the governance systems operating in the antipodes. In this article, I pursue this line of thinking, setting forth a range of observations relating to (i) the history of governance in the antipodes, (ii) institutional innovations occurring in these regions, (iii) issues of membership, (iv) jurisdictional concerns, (v) the role of science, (vi) relations with the UN system, (vii) institutional interplay, and (viii) the adaptiveness of governance systems in the face of changing circumstances. The governance systems for the polar regions are not likely to converge anytime soon. Nevertheless, this analysis should be of interest not only to those concerned with the fate of Antarctica and the Arctic but also to those seeking to find effective means of addressing needs for governance in other settings calling for governance without government.


2017 ◽  
Vol 11 (5) ◽  
pp. 2111-2116 ◽  
Author(s):  
Christian Katlein ◽  
Stefan Hendricks ◽  
Jeffrey Key

Abstract. On the basis of a new, consistent, long-term observational satellite dataset we show that, despite the observed increase of sea ice extent in the Antarctic, absorption of solar shortwave radiation in the Southern Ocean poleward of 60° latitude is not decreasing. The observations hence show that the small increase in Antarctic sea ice extent does not compensate for the combined effect of retreating Arctic sea ice and changes in cloud cover, which both result in a total increase in solar shortwave energy deposited into the polar oceans.


2010 ◽  
Vol 4 (2) ◽  
pp. 227-230 ◽  
Author(s):  
G. S. Dieckmann ◽  
G. Nehrke ◽  
C. Uhlig ◽  
J. Göttlicher ◽  
S. Gerland ◽  
...  

Abstract. We report for the first time on the discovery of calcium carbonate crystals as ikaite (CaCO3·6H2O) in sea ice from the Arctic (Kongsfjorden, Svalbard) as confirmed by morphology and indirectly by X-ray diffraction as well as XANES spectroscopy of its amorophous decomposition product. This finding demonstrates that the precipitation of calcium carbonate during the freezing of sea ice is not restricted to the Antarctic, where it was observed for the first time in 2008. This observation is an important step in the quest to quantify its impact on the sea ice driven carbon cycle.


2015 ◽  
Vol 56 (69) ◽  
pp. 18-28 ◽  
Author(s):  
Ian Simmonds

AbstractWe examine the evolution of sea-ice extent (SIE) over both polar regions for 35 years from November 1978 to December 2013, as well as for the global total ice (Arctic plus Antarctic). Our examination confirms the ongoing loss of Arctic sea ice, and we find significant (p˂ 0.001) negative trends in all months, seasons and in the annual mean. The greatest rate of decrease occurs in September, and corresponds to a loss of 3 x 106 km2 over 35 years. The Antarctic shows positive trends in all seasons and for the annual mean (p˂0.01), with summer attaining a reduced significance (p˂0.10). Based on our longer record (which includes the remarkable year 2013) the positive Antarctic ice trends can no longer be considered ‘small’, and the positive trend in the annual mean of (15.29 ± 3.85) x 103 km2 a–1 is almost one-third of the magnitude of the Arctic annual mean decrease. The global annual mean SIE series exhibits a trend of (–35.29 ± 5.75) x 103 km2 a-1 (p<0.01). Finally we offer some thoughts as to why the SIE trends in the Coupled Model Intercomparison Phase 5 (CMIP5) simulations differ from the observed Antarctic increases.


2017 ◽  
Vol 30 (16) ◽  
pp. 6265-6278 ◽  
Author(s):  
Erica Rosenblum ◽  
Ian Eisenman

Observations indicate that the Arctic sea ice cover is rapidly retreating while the Antarctic sea ice cover is steadily expanding. State-of-the-art climate models, by contrast, typically simulate a moderate decrease in both the Arctic and Antarctic sea ice covers. However, in each hemisphere there is a small subset of model simulations that have sea ice trends similar to the observations. Based on this, a number of recent studies have suggested that the models are consistent with the observations in each hemisphere when simulated internal climate variability is taken into account. Here sea ice changes during 1979–2013 are examined in simulations from the most recent Coupled Model Intercomparison Project (CMIP5) as well as the Community Earth System Model Large Ensemble (CESM-LE), drawing on previous work that found a close relationship in climate models between global-mean surface temperature and sea ice extent. All of the simulations with 1979–2013 Arctic sea ice retreat as fast as observations are found to have considerably more global warming than observations during this time period. Using two separate methods to estimate the sea ice retreat that would occur under the observed level of global warming in each simulation in both ensembles, it is found that simulated Arctic sea ice retreat as fast as observations would occur less than 1% of the time. This implies that the models are not consistent with the observations. In the Antarctic, simulated sea ice expansion as fast as observations is found to typically correspond with too little global warming, although these results are more equivocal. As a result, the simulations do not capture the observed asymmetry between Arctic and Antarctic sea ice trends. This suggests that the models may be getting the right sea ice trends for the wrong reasons in both polar regions.


2009 ◽  
Vol 1 (1) ◽  
pp. 477-497
Author(s):  
Timo Koivurova

Abstract The article will provide a study of the continental shelf submissions that have been made in the polar regions and an evaluation as to whether these pose a challenge to the two polar regimes: the Arctic Council and the Antarctic Treaty System. This will be done by comparing these regimes, examining the development of the law of the sea as regards seabed rights and studying what sort of challenge the polar regimes face from the continental shelf activity in both polar regions and how serious that challenge is. Conclusions are finally drawn as to what types of effects may ensue for the polar regimes from the continental shelf submissions by various states.


2020 ◽  
pp. 024
Author(s):  
Rym Msadek ◽  
Gilles Garric ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Lauriane Batté ◽  
...  

L'Arctique est la région du globe qui s'est réchauffée le plus vite au cours des trente dernières années, avec une augmentation de la température de surface environ deux fois plus rapide que pour la moyenne globale. Le déclin de la banquise arctique observé depuis le début de l'ère satellitaire et attribué principalement à l'augmentation de la concentration des gaz à effet de serre aurait joué un rôle important dans cette amplification des températures au pôle. Cette fonte importante des glaces arctiques, qui devrait s'accélérer dans les décennies à venir, pourrait modifier les vents en haute altitude et potentiellement avoir un impact sur le climat des moyennes latitudes. L'étendue de la banquise arctique varie considérablement d'une saison à l'autre, d'une année à l'autre, d'une décennie à l'autre. Améliorer notre capacité à prévoir ces variations nécessite de comprendre, observer et modéliser les interactions entre la banquise et les autres composantes du système Terre, telles que l'océan, l'atmosphère ou la biosphère, à différentes échelles de temps. La réalisation de prévisions saisonnières de la banquise arctique est très récente comparée aux prévisions du temps ou aux prévisions saisonnières de paramètres météorologiques (température, précipitation). Les résultats ayant émergé au cours des dix dernières années mettent en évidence l'importance des observations de l'épaisseur de la glace de mer pour prévoir l'évolution de la banquise estivale plusieurs mois à l'avance. Surface temperatures over the Arctic region have been increasing twice as fast as global mean temperatures, a phenomenon known as arctic amplification. One main contributor to this polar warming is the large decline of Arctic sea ice observed since the beginning of satellite observations, which has been attributed to the increase of greenhouse gases. The acceleration of Arctic sea ice loss that is projected for the coming decades could modify the upper level atmospheric circulation yielding climate impacts up to the mid-latitudes. There is considerable variability in the spatial extent of ice cover on seasonal, interannual and decadal time scales. Better understanding, observing and modelling the interactions between sea ice and the other components of the climate system is key for improved predictions of Arctic sea ice in the future. Running operational-like seasonal predictions of Arctic sea ice is a quite recent effort compared to weather predictions or seasonal predictions of atmospheric fields like temperature or precipitation. Recent results stress the importance of sea ice thickness observations to improve seasonal predictions of Arctic sea ice conditions during summer.


Sign in / Sign up

Export Citation Format

Share Document