scholarly journals Diversity in the organisation and lignification of tension wood fibre walls – A review

IAWA Journal ◽  
2017 ◽  
Vol 38 (2) ◽  
pp. 245-265 ◽  
Author(s):  
Barbara Ghislain ◽  
Bruno Clair

Tension wood, a tissue developed by angiosperm trees to actively recover their verticality, has long been defined by the presence of an unlignified cellulosic inner layer in the cell wall of fibres, called the G-layer. Although it was known that some species have no G-layer, the definition was appropriate since it enabled easy detection of tension wood zones using various staining techniques for either cellulose or lignin. For several years now, irrespective of its anatomical structure, tension wood has been defined by its high mechanical internal tensile stress. This definition enables screening of the diversity of cell walls in tension wood fibres. Recent results obtained in tropical species with tension wood with a delay in the lignification of the G-layer opened our eyes to the effective presence of large amounts of lignin in the G-layer of some species. This led us to review older literature mentioning the presence of lignin deposits in the G-layer and give them credit. Advances in the knowledge of tension wood fibres allow us to reconsider some previous classifications of the diversity in the organisation of the fibre walls of the tension wood.

1955 ◽  
Vol 3 (2) ◽  
pp. 177 ◽  
Author(s):  
AB Wardrop ◽  
HE Dadswell

The cell wall organization, the cell wall texture, and the degree of lignification of tension wood fibres have been investigated in a wide variety of temperate and tropical species. Following earlier work describing the cell wall structure of tension wood fibres, two additional types of cell wall organization have been observed. In one of these, the inner thick "gelatinous" layer which is typical of tension wood fibres exists in addition to the normal three-layered structure of the secondary wall; in the other only the outer layer of the secondary wall and the thick gelatinous layer are present. In all the tension wood examined the micellar orientation in the inner gelatinous layer has been shown to be nearly axial and the cellulose of this layer found to be in a highly crystalline state. A general argument is presented as to the meaning of differences in the degree, of crystallinity of cellulose. The high degree of crystallinity of cellulose in tension wood as compared with normal wood is attributed to a greater degree of lateral order in the crystalline regions of tension wood, whereas the paracrystalline phase is similar in both cases. The degree of lignification in tension wood fibres has been shown to be extremely variable. However, where the degree of tension wood development is marked as revealed by the thickness of the gelatinous layer the lack of lignification is also most marked. Severity of tension wood formation and lack of lignification have also been correlated with the incidence of irreversible collapse in tension wood. Such collapse can occur even when no whole fibres are present, e.g. in thin cross sections. Microscopic examination of collapsed samples of tension wood has led to the conclusion that the appearance of collapse in specimens containing tendon wood can often be attributed in part to excessive shrinkage associated with the development of fissures between cells, although true collapse does also occur. Possible explanations of the irreversible shrinkage and collapse of tension wood fibres are advanced.


IAWA Journal ◽  
1997 ◽  
Vol 18 (2) ◽  
pp. 107-115 ◽  
Author(s):  
Osvaldo Encinas ◽  
Geoffrey Daniel

Studies on the degradative ability of the blue stain fungus Lasiodiplodia theobromae (Pat.) Griffon ' Maublanc have shown several strains to cause significant weight losses (c. 20%) in wood of temperate and tropical species, aspen (Populus tremula) and rubberwood (Hevea brasiliensis), both species that commonly form tension wood. In addition to the consumption of soluble carbohydrates, major changes occurred in the ultrastructure of fibre cell walls, with a rapid attack of the G-layer of the gelatinous fibres. Following G-layer degradation, earlywood fibres of both species showed true cell wall degradation with pronounced erosion attack, suggesting that prior destruction of the G-layer afforded greater accessibility and ease of attack of the outer secondary cell wall layers.


IAWA Journal ◽  
2001 ◽  
Vol 22 (4) ◽  
pp. 401-413 ◽  
Author(s):  
P. B. Tomlinson

Gnetum gnemon exhibits Rouxʼs model of tree architecture, with clear differentiation of orthotropic from plagiotropic axes. All axes have similar anatomy and react to displacement in the same way. Secondary xylem of displaced stems shows little eccentricity of development and no reaction anatomy. In contrast, there is considerable eccentricity in extra-xylary tissue involving both primary and secondary production of apparent tension-wood fibres (gelatinous fibres) of three main kinds. Narrow primary fibres occur concentrically in all axes in the outer cortex as a normal developmental feature. In displaced axes gelatinous fibres are developed abundantly and eccentrically on the topographically upper side, from pre-existing and previously undetermined primary cortical cells. They are wide with lamellate cell walls. In addition narrow secondary phloem fibres are also differentiated abundantly and eccentrically on the upper side of displaced axes. These gelatinous fibres are narrow and without obviously lamellate cell walls. Eccentric gelatinous fibres thus occupy a position that suggests they have the function of tension wood fibres as found in angiosperms. This may be the first report in a gymnosperm of fibres with tension capability. Gnetum gne-mon thus exhibits reaction tissues of unique types, which are neither gymnospermous nor angiospermous. Reaction tissues seem important in maintaining the distinctive architecture of the tree.


1987 ◽  
Vol 108 (1) ◽  
pp. 201-209 ◽  
Author(s):  
C. W. Ford ◽  
R. Elliott

SummaryCell walls from mature stems of three tropical grass species (Digitaria decumbens(pangola),Setaria anceps(cv. Kazangula) and sugar cane), and temperate barley straw, were analysed for lignin, carbohydrate, and the maj or acyl groups ferulate, ρ-coumarate and acetate. Samples were incubated in nylon bags in the rumen of sheep in a 4 x 4 latin-square design, and rates of disappearance of cellulose, hemicellulose, xylose, arabinose, ferulate, ρ-coumarate and acetate were determined during 60 h incubation. Interspecies differences in cell-wall chemistry appeared largely in the variable degree of acylation with p-coumaric acid (1·0–3·3%) and acetate (0·5–3·6%), and the high glucose concentration in the hemicellulose from pangola (17%) andSetaria(9%). Barley had much lower concentrations of these components than the tropical species. After 24 h incubation, losses of cellulose and acyl groups were greatest from pangola, whereas hemicellulose and its major components xylose and arabinose were degraded to the greatest degree from barley straw.Setariacell-wall components were generally more resistant to degradation than the other species. No relationship was found between the concentration of any cell-wall constituent and degradability measurements. Nor were changes in microbial population, indicated by measuring the accumulation of cystine on the fibres, related to the rate or degree of degradation of any of the measured cell-wall constituents. Lignin was fractionated with alkali into insoluble and soluble fractions. The latter (25–50% of original lignin) gave high interspecies correlations with the degradability of total hemicellulose and its component monosaccharides. It was concluded that variability in the biodegradability of the cell walls was more likely due toin situstructural features, such as cross-linking between polymers, than to the concentration of any particular cell-wall constituent.


2005 ◽  
pp. 179-192
Author(s):  
Milenko Miric

White rot fungi usually decompose cell walls of attacked wood destroying tissue elements (i.e. parenchyma cells, wood fibres, tension wood, tracheas etc) in different amount, depending to wood-species as well as to its' zones. Different fungi secrete specific enzymes that are responsible for certain damages. As consequence, the wood structure use to be significantly and unfixable decomposed and changed. Microscopical analyses that have been run provided clear and indicative information relating to effects of fungal activity on wood tissue. Physiological requirements of fungi are for shore of the highest importance in understanding of mechanism of decaying process in the wood. The most important factors as like temperature and concentration of H ions, as well as main nutrients as sources of carbon, nitrogen and phosphorus can affect the behaviour of wood decaying fungi. The impacts of these factors on the growth and production on mycelial mass of Stereum hirsutum (Willd. ex Fr.) S.F. Gray., have been investigated. This fungus is one of the most frequent appearing on the Sessile- and Pedunculate Oak weakened trees or felled logs, behaving as parasite as well as saprophyte. As a causer of Oak sapwood white rot S. hirsutum causes significant damages of wood at forest- as well as at industrial storages.


1975 ◽  
Vol 53 (16) ◽  
pp. 1698-1711 ◽  
Author(s):  
R. L. Peterson ◽  
M. S. Firminger ◽  
L. A. Dobrindt

A β-1,3-glucan which has characteristics of callose was identified as a component of the cell wall in stomatal guard cells in three species of the fern, Ophioglossum. This identification was made by the fluorochrome properties of callose when stained with aqueous solutions of aniline blue. Controls involved both the effect of solutions of different pH on autofluorescence of guard cell walls and the extraction of leaf tissues with β-1,3-glucanases before staining with aniline blue. An electron-translucent region between the plasmalemma and the cell wall proper was observed with the electron microscope and corresponded in position with the areas that fluoresced after aniline blue staining.Other components of the guard cell wall identified included cellulose, which was identified by staining techniques, polarization microscopy, and electron microscopy; and a phenolic substance identified by a number of staining reactions. The cell wall failed to stain with a number of reagents for the identification of lignin.


2004 ◽  
Vol 155 (12) ◽  
pp. 523-527 ◽  
Author(s):  
Daniel Keunecke ◽  
Sebastian Baum

The tension wood of some deciduous trees is characterised by fibres that form an additional cell wall layer, the so-called «gelatinous layer» (g-layer). The chronology of g-layer formation in the process of cell wall differentiation and lignification was investigated using two-year old poplars (Populus tremula L.). For this purpose the pinning-method was applied. The results show that the g-layer formation probably takes place at an early stage of secondary wall formation.


1970 ◽  
Vol 45 (2) ◽  
pp. 246-271 ◽  
Author(s):  
R. Malcolm Brown ◽  
Werner W. Franke ◽  
Hans Kleinig ◽  
Heinz Falk ◽  
Peter Sitte

The cell wall of the marine chrysophycean alga Pleurochrysis scherfellii is composed of distinct wall fragments embedded in a gelatinous mass. The latter is a polysaccharide of pectic character which is rich in galactose and ribose. These wall fragments are identified as scales. They have been isolated and purified from the vegetative mother cell walls after zoospore formation. Their ultrastructure is described in an electron microscope study combining sectioning, freeze-etch, and negative staining techniques. The scales consist of a layer of concentrically arranged microfibrils (ribbons with cross-sections of 12 to 25 x 25 to 40 A) and underlying radial fibrils of similar dimensions. Such a network-plate is densely coated with particles which are assumed to be identical to the pectic component. The microfibrils are resistant to strong alkaline treatment and have been identified as cellulose by different methods, including sugar analysis after total hydrolysis, proton resonance spectroscopical examination (NMR spectroscopy) of the benzoylated product, and diverse histochemical tests. The formation and secretion of the scales can be followed along the maturing Golgi cisternae starting from a pronounced dilated "polymerization center" as a completely intracisternal process which ends in the exocytotic extrusion of the scales. The scales reveal the very same ultrastructure within the Golgi cisternae as they do in the cell wall. The present finding represents the first evidence on cellulose formation by the Golgi apparatus and is discussed in relation to a basic scheme for cellulose synthesis in plant cells in general.


2021 ◽  
Author(s):  
Shingo Kiyoto ◽  
Junji Sugiyama

Abstract Tensile tests of birch cork were performed in the tangential direction. Birch cork in the wet state showed significantly higher extensibility and toughness than those in the oven-dried state. The histochemical structure of birch cork was investigated by microscopic observation and spectroscopic analysis. Birch cork cell walls showed a three-layered structure. In transmission electron micrographs, osmium tetroxide stained the outer and inner layers, whereas potassium permanganate stained the middle and inner layers. After chemical treatment to remove suberin and lignin, the outer and inner layers disappeared and Fourier-transformed infrared spectra showed the cellulose I pattern. Polarizing light micrographs indicated that molecular chains in the outer and inner layers were oriented perpendicular to suberin lamination, whereas those in the inner layer showed longitudinal orientation. These results suggested that the outer and inner layers mainly consist of suberin, whereas the middle layer and compound middle lamella consist of lignin, cellulose, and other polysaccharides. We hypothesized a hierarchical model of the birch cork cell wall. The lignified cell wall with helical arrangement of cellulose microfibrils is sandwiched between two suberized walls. Cellulose microfibrils in the middle layer act like a spring and bear tensile loads. In the wet state, water and cellulose in the compound middle lamella transfer tensile stress between cells. In the dried state, this stress-transferal system functions poorly and fewer cells bear stress. Suberin in the outer and inner layers prevents absolute drying to maintain mechanical properties of the bark and to bear tensile stress caused by trunk diameter growth.


IAWA Journal ◽  
2015 ◽  
Vol 36 (1) ◽  
pp. 44-57 ◽  
Author(s):  
Raoufeh Abedini ◽  
Bruno Clair ◽  
Kambiz Pourtahmasi ◽  
Françoise Laurans ◽  
Olivier Arnould

Trees can control their shape and resist gravity thanks to their ability to produce wood under tensile stress. This stress is known to be produced during the maturation of wood fibres but the mechanism of its generation remains unclear. This study focuses on the formation of the secondary wall in tension wood produced in artificially tilted poplar saplings. Thickness of secondary wall layer (SL) and gelatinous layer (GL) were measured from cambium to mature wood in several trees sampled at different times after tilting. Measurements on wood fibres produced before tilting show the progressive increase of secondary wall thickness during the growing season. After the tilting date, SL thickness decreased markedly from normal wood to tension wood while the total thickness increased compared to normal wood, with the development of a thick GL. However, even after GL formation, SL thickness continues to increase during the growing season. GL thickening was observed to be faster than SL thickening. The development of the unlignified GL is proposed to be a low cost, efficient strategy for a fast generation of tensile stress in broadleaved trees.


Sign in / Sign up

Export Citation Format

Share Document