scholarly journals In Vitro Processing of Glutamyl Endopeptidase Proenzymes from Enterococcus faecalis and Importance of N-terminal Residue in Enzyme Catalysis

2013 ◽  
Vol 1 (5) ◽  
pp. 73
Author(s):  
Shakh M. A. Rouf
Author(s):  
Karlynne Freire Mendonça ◽  
José Klauber Roger Carneiro ◽  
Maria Auxiliadora Silva Oliveira

Objetivos: avaliar a atividade antimicrobiana em extrato aquoso, hidroalcoólico e alcoólico das folhas de espécies da família Lamiaceae frente a bactérias de interesse. Método: Foram escolhidas quatro espécies: Ocimum gratissimum, Plectranthus amboinicus, Mentha arvensis e Plectranthus barbatus. A partir das folhas foram confeccionados os extratos aquoso, hidroalcoólico e alcoólico nas concentrações 100mg/mL, 50mg/mL e 25mg/mL. Foram selecionadas as bactérias Streptococcus pyogenes, Enterococcus faecalis, Staphylococcus aureus e Pseudomonas aeruginosa para os ensaios de antibiose em Ágar Mueller-Hinton. Resultados: P. barbatus, em seu extrato hidroalcoólico mostrou ativo nas três concentrações para bactéria S. aureus, e ainda foi ativo para P. aeruginosa, demonstrando no extrato alcoólico atividade frente as bactérias. Para M. arvensis e P. amboinicus, seus extratos hidroalcoólico e alcoólico apresentaram atividade para S. aureus. Conclusão: Sugere-se que as espécies em questão apresentem boa atividade antimicrobiana, sendo necessária a realização de mais estudos para melhor entender esse mecanismo.


2020 ◽  
Vol 2 (4) ◽  
pp. 1-1
Author(s):  
Gülşah Balan ◽  
Sadık Kalaycı ◽  
Ayşen Yarat ◽  
Serap Akyüz ◽  
Firettin Şahin

2020 ◽  
Vol 318 (1) ◽  
pp. G1-G9 ◽  
Author(s):  
Richard A. Jacobson ◽  
Kiedo Wienholts ◽  
Ashley J. Williamson ◽  
Sara Gaines ◽  
Sanjiv Hyoju ◽  
...  

Perforations, anastomotic leak, and subsequent intra-abdominal sepsis are among the most common and feared complications of invasive interventions in the colon and remaining intestinal tract. During physiological healing, tissue protease activity is finely orchestrated to maintain the strength and integrity of the submucosa collagen layer in the wound. We (Shogan, BD et al. Sci Trans Med 7: 286ra68, 2015.) have previously demonstrated in both mice and humans that the commensal microbe Enterococcus faecalis selectively colonizes wounded colonic tissues and disrupts the healing process by amplifying collagenolytic matrix-metalloprotease activity toward excessive degradation. Here, we demonstrate for the first time, to our knowledge, a novel collagenolytic virulence mechanism by which E. faecalis is able to bind and locally activate the human fibrinolytic protease plasminogen (PLG), a protein present in high concentrations in healing colonic tissue. E. faecalis-mediated PLG activation leads to supraphysiological collagen degradation; in this study, we demonstrate this concept both in vitro and in vivo. This pathoadaptive response can be mitigated with the PLG inhibitor tranexamic acid (TXA) in a fashion that prevents clinically significant complications in validated murine models of both E. faecalis- and Pseudomonas aeruginosa-mediated colonic perforation. TXA has a proven clinical safety record and is Food and Drug Administration approved for topical application in invasive procedures, albeit for the prevention of bleeding rather than infection. As such, the novel pharmacological effect described in this study may be translatable to clinical trials for the prevention of infectious complications in colonic healing. NEW & NOTEWORTHY This paper presents a novel mechanism for virulence in a commensal gut microbe that exploits the human fibrinolytic system and its principle protease, plasminogen. This mechanism is targetable by safe and effective nonantibiotic small molecules for the prevention of infectious complications in the healing gut.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Beatriz H. D. Panariello ◽  
Justin K. Kindler ◽  
Kenneth J. Spolnik ◽  
Ygal Ehrlich ◽  
George J. Eckert ◽  
...  

AbstractRoot canal disinfection is of utmost importance in the success of the treatment, thus, a novel method for achieving root canal disinfection by electromagnetic waves, creating a synergistic reaction via electric and thermal energy, was created. To study electromagnetic stimulation (EMS) for the disinfection of root canal in vitro, single rooted teeth were instrumented with a 45.05 Wave One Gold reciprocating file. Specimens were sterilized and inoculated with Enterococcus faecalis ATCC 29,212, which grew for 15 days to form an established biofilm. Samples were treated with 6% sodium hypochlorite (NaOCl), 1.5% NaOCl 1.5% NaOCl with EMS, 0.9% saline with EMS or 0.9% saline. After treatments, the colony forming units (CFU) was determined. Data was analyzed by Wilcoxon Rank Sums Test (α = 0.05). One sample per group was scored and split for confocal laser scanning microscopy imaging. There was a significant effect with the use of NaOCl with or without EMS versus 0.9% saline with or without EMS (p = 0.012 and 0.003, respectively). CFUs were lower when using 0.9% saline with EMS versus 0.9% saline alone (p = 0.002). Confocal imaging confirmed CFU findings. EMS with saline has an antibiofilm effect against E. faecalis and can potentially be applied for endodontic disinfection.


2002 ◽  
Vol 94 (5) ◽  
pp. 478-481 ◽  
Author(s):  
Seiichi Taguchi ◽  
Kumiko Arakawa ◽  
Keiichi Yokoyama ◽  
Shino Takehana ◽  
Hiroshi Takagi ◽  
...  
Keyword(s):  

2021 ◽  
Vol 9 (3) ◽  
pp. 517
Author(s):  
Mohamed El-Telbany ◽  
Gamal El-Didamony ◽  
Ahmed Askora ◽  
Eman Ariny ◽  
Dalia Abdallah ◽  
...  

Phage therapy is an alternative treatment to antibiotics that can overcome multi-drug resistant bacteria. In this study, we aimed to isolate and characterize lytic bacteriophages targeted against Enterococcus faecalis isolated from root canal infections obtained from clinics at the Faculty of Dentistry, Ismalia, Egypt. Bacteriophage, vB_ZEFP, was isolated from concentrated wastewater collected from hospital sewage. Morphological and genomic analysis revealed that the phage belongs to the Podoviridae family with a linear double-stranded DNA genome, consisting of 18,454, with a G + C content of 32.8%. Host range analysis revealed the phage could infect 10 of 13 E. faecalis isolates exhibiting a range of antibiotic resistances recovered from infected root canals with efficiency of plating values above 0.5. One-step growth curves of this phage showed that it has a burst size of 110 PFU per infected cell, with a latent period of 10 min. The lytic activity of this phage against E. faecalis biofilms showed that the phage was able to control the growth of E. faecalis in vitro. Phage vB_ZEFP could also prevent ex-vivo E. faecalis root canal infection. These results suggest that phage vB_ZEFP has potential for application in phage therapy and specifically in the prevention of infection after root canal treatment.


2019 ◽  
Vol 829 ◽  
pp. 263-269
Author(s):  
Denny Nurdin ◽  
Andri Hardiansyah ◽  
Elsy Rahimi Chaldun ◽  
Anti Khoerul Fikkriyah ◽  
Hendra Dian Adhita Dharsono ◽  
...  

Exploration of natural compound for the treatment of dental-related problems are gaining of interest for enhancing therapeutic efficacy of the drugs delivery system. In this study, we have prepared terpenoid, which have been isolated from Myrmecodia pendens Merr & Perry from Papua Island, Indonesia, to be encapsulated in Polylactic-co-glycolic acid (PLGA), as the most widely used biodegradable polymer for biomedical applications, through one step single-emulsion method followed by subsequent coating by poly (vinyl alcohol) (PVA). The resultant of terpenoid-loaded PLGA microparticles were characterized systematically through scanning electron microscope and Fourier-transform infrared spectroscopy. In vitro drug release test was evaluated through dialysis method. Antibacterial test was conducted against Enterococcus faecalis as a model for persistent bacteria that causes root canal infections. The results showed that terpenoid-loaded PLGA microparticles were developed in spherical morphology with an average particle size of around 1-2μm. Terpenoid released from PLGA compartment at pH 6.5 and temperature of 37°C through a controlled-release profile mechanism with enhanced prolonged release. The bacterial assay result showed that terpenoid-loaded PLGA microparticles could reduce Enterococcus faecalis, effectively. Eventually, these result show that terpenoid-loaded PLGA microparticles as unique natural product-based extract could be developed as a potential naturally-based drug for dental-related diseases applications.


2015 ◽  
Vol 197 (18) ◽  
pp. 2908-2919 ◽  
Author(s):  
Anthony O. Gaca ◽  
Pavel Kudrin ◽  
Cristina Colomer-Winter ◽  
Jelena Beljantseva ◽  
Kuanqing Liu ◽  
...  

ABSTRACTThe bacterial stringent response (SR) is a conserved stress tolerance mechanism that orchestrates physiological alterations to enhance cell survival. This response is mediated by the intracellular accumulation of the alarmones pppGpp and ppGpp, collectively called (p)ppGpp. InEnterococcus faecalis, (p)ppGpp metabolism is carried out by the bifunctional synthetase/hydrolaseE. faecalisRel (RelEf) and the small alarmone synthetase (SAS) RelQEf. Although Rel is the main enzyme responsible for SR activation inFirmicutes, there is emerging evidence that SASs can make important contributions to bacterial homeostasis. Here, we showed that RelQEfsynthesizes ppGpp more efficiently than pppGpp without the need for ribosomes, tRNA, or mRNA. In addition to (p)ppGpp synthesis from GDP and GTP, RelQEfalso efficiently utilized GMP to form GMP 3′-diphosphate (pGpp). Based on this observation, we sought to determine if pGpp exerts regulatory effects on cellular processes affected by (p)ppGpp. We found that pGpp, like (p)ppGpp, strongly inhibits the activity ofE. faecalisenzymes involved in GTP biosynthesis and, to a lesser extent, transcription ofrrnBbyEscherichia coliRNA polymerase. Activation ofE. coliRelA synthetase activity was observed in the presence of both pGpp and ppGpp, while RelQEfwas activated only by ppGpp. Furthermore, enzymatic activity of RelQEfis insensitive to relacin, a (p)ppGpp analog developed as an inhibitor of “long” RelA/SpoT homolog (RSH) enzymes. We conclude that pGpp can likely function as a bacterial alarmone with target-specific regulatory effects that are similar to what has been observed for (p)ppGpp.IMPORTANCEAccumulation of the nucleotide second messengers (p)ppGpp in bacteria is an important signal regulating genetic and physiological networks contributing to stress tolerance, antibiotic persistence, and virulence. Understanding the function and regulation of the enzymes involved in (p)ppGpp turnover is therefore critical for designing strategies to eliminate the protective effects of this molecule. While characterizing the (p)ppGpp synthetase RelQ ofEnterococcus faecalis(RelQEf), we found that, in addition to (p)ppGpp, RelQEfis an efficient producer of pGpp (GMP 3′-diphosphate).In vitroanalysis revealed that pGpp exerts complex, target-specific effects on processes known to be modulated by (p)ppGpp. These findings provide a new regulatory feature of RelQEfand suggest that pGpp may represent a new member of the (pp)pGpp family of alarmones.


Sign in / Sign up

Export Citation Format

Share Document