EEG Signals Classification Using Support Vector Machine

2020 ◽  
Vol 12 (2) ◽  
pp. 215-224
Author(s):  
Abdelhakim Ridouh ◽  
Daoud Boutana ◽  
Salah Bourennane

We address with this paper some real-life healthy and epileptic EEG signals classification. Our proposed method is based on the use of the discrete wavelet transform (DWT) and Support Vector Machine (SVM). For each EEG signal, five wavelet decomposition level is applied which allow obtaining five spectral sub-bands correspond to five rhythms (Delta, Theta, Alpha, Beta and gamma). After the extraction of some features on each sub-band (energy, standard deviation, and entropy) a moving average (MA) is applied to the resulting features vectors and then used as inputs to SVM to train and test. We test the method on EEG signals during two datasets: normal and epileptics, without and with using MA to compare results. Three parameters are evaluated such as sensitivity, specificity, and accuracy to test the performances of the used methods.

Author(s):  
Deivasigamani S ◽  
◽  
Senthilpari C ◽  
Wong Hin Yong ◽  
Rajesh P.K. ◽  
...  

Contamination in human cerebrum causes the mind issue which is as Epilepsy. The contaminated territory in the cerebrum area creates the unpredictable example signals as focal signs and the other sound locales in the mind produce the standard example signals as non-focal sign. Henceforth, the discovery of focal signs from the non-focal signs is a significant for epileptic medical procedure in epilepsy patients. This paper proposes a straightforward and proficient technique for EEG (Electroencephalogram) signals orders utilizing SVM (Support Vector Machine) classifier. The exhibition of the proposed EEG signals characterization framework is assessed as far as Sensitivity, Specificity, and Accuracy.


2021 ◽  
Vol 15 ◽  
Author(s):  
Wu Wen

BackgroundIn recent years, with the acceleration of life rhythm and increased pressure, the problem of sleep disorders has become more and more serious. It affects people’s quality of life and reduces work efficiency, so the monitoring and evaluation of sleep quality is of great significance. Sleep staging has an important reference value in sleep quality assessment. This article starts with the study of sleep staging to detect and analyze sleep quality. For the purpose of sleep quality detection, this article proposes a sleep quality detection method based on electroencephalography (EEG) signals.Materials and MethodsThis method first preprocesses the EEG signals and then uses the discrete wavelet transform (DWT) for feature extraction. Finally, the transfer support vector machine (TSVM) algorithm is used to classify the feature data.ResultsThe proposed algorithm was tested using 60 pieces of data from the National Sleep Research Resource Library of the United States, and sleep quality was evaluated using three indicators: sensitivity, specificity, and accuracy. Experimental results show that the classification performance of the TSVM classifier is significantly higher than those of other comparison algorithms. This further validated the effectiveness of the proposed sleep quality detection method.


Author(s):  
Jafar Zamani ◽  
Ali Boniadi Naieni

Purpose: There are many methods for advertisements of products and neuromarketing is new area in this field. In neuromarketing, we use neuroscience information for revealing Consumer behavior by extracting brain activity. Functional Magnetic Resonance Imaging (fMRI), Magnetoencephalography (MEG), and Electroencephalography (EEG) are high efficient tools for investigating the brain activity in neuromarketing. EEG signal is a high temporal resolution and a cheap method for examining the brain activity. Materials and Methods: 32 subjects (16 males and 16 females) aging between 20-35 years old participated in this study. We proposed neuromarketing method exploit EEG system for predicting consumer preferences while they view E-commerce products. We apply some important preprocessing steps for noise and artifacts elimination of the EEG signal. In next step feature extraction methods are applied on the EEG data such as Discrete Wavelet Transform (DWT) and statistical features. The goal of this study is classification of analyzed EEG signal to likes and dislikes using supervised algorithms. We use Support Vector Machine (SVM), Artificial Neural Network (ANN) and Random Forest (RF) for data classification. The mentioned methods were used for whole and lobe brain data. Results: The results show high efficacy for SVM algorithms than other methods. Accuracy, sensitivity, specificity and precision parameters were used for evaluation of the model performance. The results show high performance of SVM algorithms for classification of the data with accuracy more than 87% and 84% for whole and parietal lobe data. Conclusion: We designed a tool with EEG signals for extraction brain activity of consumers using neuromarketing methods. We investigated the effects of advertising on brain activity of consumers by EEG signals measures.


Author(s):  
Rana Alrawashdeh ◽  
Mohammad Al-Fawa'reh ◽  
Wail Mardini

Many approaches have been proposed using Electroencephalogram (EEG) to detect epilepsy seizures in their early stages. Epilepsy seizure is a severe neurological disease. Practitioners continue to rely on manual testing of EEG signals. Artificial intelligence (AI) and Machine Learning (ML) can effectively deal with this problem. ML can be used to classify EEG signals employing feature extraction techniques. This work focuses on automated detection for epilepsy seizures using ML techniques. Various algorithms are investigated, such as  Bagging, Decision Tree (DT), Adaboost, Support vector machine (SVM), K-nearest neighbors(KNN), Artificial neural network(ANN), Naïve Bayes, and Random Forest (RF) to distinguish injected signals from normal ones with high accuracy. In this work, 54 Discrete wavelet transforms (DWTs) are used for feature extraction, and the similarity distance is applied to identify the most powerful features. The features are then selected to form the features matrix. The matrix is subsequently used to train ML. The proposed approach is evaluated through different metrics such as F-measure, precision, accuracy, and Recall. The experimental results show that the SVM and Bagging classifiers in some data set combinations, outperforming all other classifiers


Author(s):  
AZA Zainuddin ◽  
W. Mansor ◽  
Khuan Y. Lee ◽  
Z. Mahmoodin

Dyslexia is referred as learning disability that causes learner having difficulties in decoding, reading and writing words. This disability associates with learning processing region in the human brain. Activities in this region can be examined using electroencephalogram (EEG) which record electrical activity during learning process. This study looks into performance of Support Vector Machine (SVM) using RBF kernel in classifying EEG signal of Normal, Poor and Capable Dyslexic children during writing words and non-words. Discrete Wavelet Transform (DWT) with Daubechies order 2 was employed to extract the power of beta and theta waves of EEG signal. Beta and Theta/Beta ratio form the input features for classifier.  Multiclass one versus one SVM was used in the classification where RBF kernel parameters and box constraint values were varied with the factor of 10 to analyze performance of the classifier. It was found that the best performance of SVM with 91% overall accuracy was obtained when both kernel scale and box constraint are set to one.


2015 ◽  
Vol 27 (02) ◽  
pp. 1550015 ◽  
Author(s):  
Assya Bousbia-Salah ◽  
Malika Talha-Kedir

Wavelet transform decomposition of electroencephalogram (EEG) signals has been widely used for the analysis and detection of epileptic seizure of patients. However, the classification of EEG signals is still challenging because of high nonstationarity and high dimensionality. The aim of this work is an automatic classification of the EEG recordings by using statistical features extraction and support vector machine. From a real database, two sets of EEG signals are used: EEG recorded from a healthy person and from an epileptic person during epileptic seizures. Three important statistical features are computed at different sub-bands discrete wavelet and wavelet packet decomposition of EEG recordings. In this study, to select the best wavelet for our application, five wavelet basis functions are considered for processing EEG signals. After reducing the dimension of the obtained data by linear discriminant analysis and principal component analysis (PCA), feature vectors are used to model and to train the efficient support vector machine classifier. In order to show the efficiency of this approach, the statistical classification performances are evaluated, and a rate of 100% for the best classification accuracy is obtained and is compared with those obtained in other studies for the same dataset. However, this method is not meant to replace the clinician but can assist him for his diagnosis and reinforce his decision.


2017 ◽  
Vol 26 (12) ◽  
pp. 1750198 ◽  
Author(s):  
Abdelhakim Ridouh ◽  
Daoud Boutana ◽  
Salah Bourennane

This paper presents a method to characterize, identify and classify some pathological Electroencephalogram (EEG) signals. We use some Time Frequency Distributions (TFDs) to analyze its nonstationarity. The analysis is conducted by the spectrogram (SP), the Choi–Williams Distribution (CWD) and the Smoothed Pseudo Wigner Ville Distribution (SPWVD). The studies are carried on some real EEG signals collected from a known database. The estimation of the best value of parameters for each distribution is achieved using the Rényi entropy (RE). The time-frequency results have permitted to characterize some pathological EEG signals. In addition, the Rényi Marginal Entropy (RME) is used for the purpose of detecting the peak seizures and discriminates between normal and pathological EEG signals. The frequency bands are evaluated using the Marginal Frequency (MF). The EEG signal classification of two sets A and E containing normal and pathologic EEG signals, respectively, is performed using our proposed method based on energy extraction of signals from time-frequency plane. Also, the Moving Average (MA) is used as a tool to obtain better classification results. The results conducted on real-life EEG signals illustrate the effectiveness of the proposed method.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2505 ◽  
Author(s):  
Fahd A. Alturki ◽  
Khalil AlSharabi ◽  
Akram M. Abdurraqeeb ◽  
Majid Aljalal

Analysis of electroencephalogram (EEG) signals is essential because it is an efficient method to diagnose neurological brain disorders. In this work, a single system is developed to diagnose one or two neurological diseases at the same time (two-class mode and three-class mode). For this purpose, different EEG feature-extraction and classification techniques are investigated to aid in the accurate diagnosis of neurological brain disorders: epilepsy and autism spectrum disorder (ASD). Two different modes, single-channel and multi-channel, of EEG signals are analyzed for epilepsy and ASD. The independent components analysis (ICA) technique is used to remove the artifacts from EEG dataset. Then, the EEG dataset is segmented and filtered to remove noise and interference using an elliptic band-pass filter. Next, the EEG signal features are extracted from the filtered signal using a discrete wavelet transform (DWT) to decompose the filtered signal to its sub-bands delta, theta, alpha, beta and gamma. Subsequently, five statistical methods are used to extract features from the EEG sub-bands: the logarithmic band power (LBP), standard deviation, variance, kurtosis, and Shannon entropy (SE). Further, the features are fed into four different classifiers, linear discriminant analysis (LDA), support vector machine (SVM), k-nearest neighbor (KNN), and artificial neural networks (ANNs), to classify the features corresponding to their classes. The combination of DWT with SE and LBP produces the highest accuracy among all the classifiers. The overall classification accuracy approaches 99.9% using SVM and 97% using ANN for the three-class single-channel and multi-channel modes, respectively.


2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Ahmad Reza Musthafa ◽  
Handayani Tjandrasa

Abstract. Electroencephalogram (EEG) signals has been widely researched and developed in many fields of science. EEG signals could be classified into useful information for the application of Brain Computer Interface topic (BCI). In this research, we focus in a topic about driving a car using EEG signal. There are many approaches in EEG signal classification, but some approaches do not robust EEG signals that have many artifacts and have been recorded in real time. This research aims to classify EEG signals to obtain more optimal results, especially EEG signals with many artifacts and can be recorded in realtime. This research uses Emotiv EPOC device to record EEG signals in realtime. In this research, we propose the combination of Automatic Artifact Removal (AAR) and Support Vector Machine (SVM) which has 71% of accuracy that can be applied to drive a virtual car.Keyword: EEG signal classification, automatic artifact removal, brain computer interface Abstrak. Penelitian berbasis sinyal Electroencephalogram (EEG) telah banyak diteliti dan dikembangkan pada berbagai bidang ilmu pengetahuan. Sinyal EEG dapat diklasifikasikan ke dalam bentuk informasi untuk pengaplikasian topik Brain Computer Interface (BCI). Pada penelitian ini difokuskan pada topik pengendalian mobil menggunakan perintah sinyal EEG. Terdapat beberapa pendekatan dalam klasifikasi sinyal EEG, tetapi beberapa pendekatan tersebut tidak robust terhadap sinyal EEG yang memiliki banyak artefak dan direkam secara realtime. Penelitian ini bertujuan untuk mengklasifikasikan sinyal EEG dengan hasil lebih optimal, khususnya pada sinyal EEG yang memiliki banyak artefak dan direkam secara realtime. Penelitian ini menggunakan perangkat Emotiv EPOC untuk merekam sinyal EEG secara realtime. Pada penelitian ini diusulkan kombinasi Automatic Artifact Removal (AAR) dan Support Vector Machine (SVM) yang menghasilkan hasil akurasi sebesar 71% untuk klasifikasi sinyal EEG pada kasus pengendalian mobil virtual.Kata Kunci: EEG signal classification, automatic artifact removal, brain computer interface


Sign in / Sign up

Export Citation Format

Share Document