Experimental and Numerical Studies on Tension Behavior of Casing and Dowel Joint of Square Steel Tube

2011 ◽  
Vol 4 (8) ◽  
pp. 2890-2896
Author(s):  
Min Ding ◽  
Zhenhua Hou ◽  
Xiugen Jiang ◽  
Zichen Lin ◽  
Guangkui Zhang ◽  
...  
2010 ◽  
Vol 156-157 ◽  
pp. 1555-1558
Author(s):  
Min Ding ◽  
Zhen Hua Hou ◽  
Xiu Gen Jiang ◽  
Zi Chen Lin ◽  
Guang Kui Zhang ◽  
...  

The study on tension behavior of casing and dowel joint of square steel tube was carried out by using finite element analysis software ANSYS/LS-DYNA with consideration of geometric nonlinearity, material nonlinearity and contact nonlinearity. On this basis, the effects of inside tube wall thickness, main tube wall thickness, and inserting depth on failure mode, ultimate tensile load and deformation of casing and dowel joint of square steel tube was discussed. The results show that there are three types of failure modes, i.e., bolt failure, inside tube failure and main tube failure, when the joints are subjected to axial tension force. Compare to the joint with the same wall thickness of inside tube and main tube, the reduction of wall thickness of inside tube or main tube will weaken greatly the ultimate tensile load of the joint. The ultimate tensile load of casing and dowel joints is proportional to bolt shear strength, tube wall thickness, inserting depth, and tube edge length. The fruits are useful to the design and application of casing and dowel joints of square steel tube.


2010 ◽  
Vol 163-167 ◽  
pp. 1574-1577 ◽  
Author(s):  
Tong Feng Zhao ◽  
Hong Nan Li ◽  
Jia Huan Yu

Moment-deformation curves of square steel tube filled with steel reinforced concrete subjected to bending load were simulated by the ABAQUS software. Calculated and experimental curves agreed well with each other. Through studying further the calculated member, the behavior of materials subjected to moment is given. Finally, flexural capacity formula of square steel tube filled with cross steel reinforced concrete is proposed.


2014 ◽  
Vol 578-579 ◽  
pp. 340-345
Author(s):  
Guo Chang Li ◽  
Bo Wen Zhu ◽  
Yu Liu

In this paper, using ABAQUS, 16 high-strength concrete filled high-strength square steel tube middle-long columns’ axial compression process were simulated. The load-deflection relationships were obtained and the new combination in improving the bearing capacity and plastic deformation has a great advantage. Realization of length variation slenderness ratio by changing the length of column, this paper also study the influence of slenderness ratio, the main parameters of the high-strength concrete filled high-strength square steel tube middle-long column. It is found that both bearing capacity and the plastic capacity are associated with slenderness ratio.


Author(s):  
Ming Li ◽  
Ming Zhao ◽  
Yuanqing Wang ◽  
Wei Tao ◽  
Shoukun Li ◽  
...  

2018 ◽  
Vol 38 (2) ◽  
pp. 242-252
Author(s):  
Jianrong Yang ◽  
Zhiyu Zhang

A new concept of a flexible rock-shed is presented for protection of the railway from falling rocks. The flexible rock-shed is made of flexible nets connected by specific spring spacer bars to an array of reinforced concrete portable frames which are linked by a longitudinal steel tube truss. To evaluate the performance of the flexible rock-shed, experimental and numerical studies are carried out in the present study. Impact tests are conducted on a full-scale partial model of the prototype structure when it is subjected to a falling block of 340 kg. The impact time interval, maximum deflection of the flexible net, tensile forces in the supporting ropes, and axial strains of spring spacer bars are recorded. To further examine the dynamic behavior of the flexible rock-shed, numerical simulations are also carried out by using the explicit finite element code ANSYS/LS-DYNA. It is found that the numerical results coincide well with the experimental data and both the numerical and experimental studies reveal that the structure can withstand impact energy of 50 kJ with all the materials working in the elastic range. The structural details are improved and the basis for the design and construction of similar structures in the future is provided.<br>


2021 ◽  
Vol 2101 (1) ◽  
pp. 012059
Author(s):  
Z J Yang ◽  
X Li ◽  
G C Li ◽  
S C Peng

Abstract Hollow concrete-filled steel tubular (CFST) member is mainly adopted in power transmission and transformation structures, but when it is used in the superstructure with complex stress, the hollow CFST member has a low bearing capacity and is prone to brittle failure. To improve the mechanical performance of hollow CFST members, a new type of reinforced hollow high strength concrete-filled square steel tube (RHCFSST) was proposed, and its axial compression performance was researched. 18 finite element analysis (FEA) models of axially loaded RHCFSST stub columns were established through FEA software ABAQUS. The whole stress process of composite columns was studied, and parametric studies were carried out to analyze the mechanical performance of the member. Parameters of the steel strength, steel ratio, deformed bar and sandwich concrete strength were varied. Based on the simulation results, the stress process of members can be divided into four stages: elastic stage, elastoplastic stage, descending stage and gentle stage. With the increase of steel strength, steel ratio, the strength of sandwich concrete and the addition of deformed bars, the ultimate bearing capacity of members also increases. Additionally, the increment of those parameters will improve the ductility of the member, except for the sandwich concrete strength.


Author(s):  
Guochang Li ◽  
Zhichang Zhan ◽  
Zhijian Yang ◽  
Yu Yang

The concrete-filed square steel tube with inner I-shaped CFRP profiles short columns under bi-axial eccentric load were investigated by the finite element analysis software ABAQUS. The working mechanism of the composite columns which is under bi-axial eccentric load are investigated by using the stress distribution diagram of steel tube concrete and the I-shaped CFRP profiles. In this paper, the main parameters; eccentric ratio, steel ratio, steel yield strength, concrete compressive strength and CFRP distribution rate of the specimens were investigated to know the mechanical behavior of them. The interaction between the steel tube and the concrete interface at different characteristic points of the composite columns were analyzed. The results showed that the ultimate bearing capacity of the concrete-filed square steel tube with inner I-shaped CFRP profiles short columns under bi-axial eccentric load decrease with the increase of eccentric ratio, the ultimate bearing capacity of the composite columns increase with the increase of steel ratio, steel yield strength, concrete compressive strength and CFRP distribution rate. The contact pressure between the steel tube and the concrete decreased from the corner zone to the flat zone, and the contact pressure decreased from the mid-height cross section to other sections.


Sign in / Sign up

Export Citation Format

Share Document