Application of Genetic Algorithm for the Optimization of Energy Saving Glass Coating Structure Design

2014 ◽  
Vol 20 (10) ◽  
pp. 1905-1909 ◽  
Author(s):  
Fauzi Mohd Johar ◽  
Farah Ayuni Azmin ◽  
Abdul Samad Shibghatullah ◽  
Mohamad Kadim Suaidi ◽  
Badrul Hisham Ahmad ◽  
...  
2014 ◽  
Vol 495 ◽  
pp. 012031
Author(s):  
F M Johar ◽  
F A Azmin ◽  
A S Shibghatullah ◽  
M K Suaidi ◽  
B H Ahmad ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 344
Author(s):  
Alejandro Humberto García Ruiz ◽  
Salvador Ibarra Martínez ◽  
José Antonio Castán Rocha ◽  
Jesús David Terán Villanueva ◽  
Julio Laria Menchaca ◽  
...  

Electricity is one of the most important resources for the growth and sustainability of the population. This paper assesses the energy consumption and user satisfaction of a simulated air conditioning system controlled with two different optimization algorithms. The algorithms are a genetic algorithm (GA), implemented from the state of the art, and a non-dominated sorting genetic algorithm II (NSGA II) proposed in this paper; these algorithms control an air conditioning system considering user preferences. It is worth noting that we made several modifications to the objective function’s definition to make it more robust. The energy-saving optimization is essential to reduce CO2 emissions and economic costs; on the other hand, it is desirable for the user to feel comfortable, yet it will entail a higher energy consumption. Thus, we integrate user preferences with energy-saving on a single weighted function and a Pareto bi-objective problem to increase user satisfaction and decrease electrical energy consumption. To assess the experimentation, we constructed a simulator by training a backpropagation neural network with real data from a laboratory’s air conditioning system. According to the results, we conclude that NSGA II provides better results than the state of the art (GA) regarding user preferences and energy-saving.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Yingfeng Zhao ◽  
Jianhua Liu ◽  
Jiangtao Ma ◽  
Linlin Wu

AbstractCurrent studies on cable harness layouts have mainly focused on cable harness route planning. However, the topological structure of a cable harness is also extremely complex, and the branch structure of the cable harness can affect the route of the cable harness layout. The topological structure design of the cable harness is a key to such a layout. In this paper, a novel multi-branch cable harness layout design method is presented, which unites the probabilistic roadmap method (PRM) and the genetic algorithm. First, the engineering constraints of the cable harness layout are presented. An obstacle-based PRM used to construct non-interference and near to the surface roadmap is then described. In addition, a new genetic algorithm is proposed, and the algorithm structure of which is redesigned. In addition, the operation probability formula related to fitness is proposed to promote the efficiency of the branch structure design of the cable harness. A prototype system of a cable harness layout design was developed based on the method described in this study, and the method is applied to two scenarios to verify that a quality cable harness layout can be efficiently obtained using the proposed method. In summary, the cable harness layout design method described in this study can be used to quickly design a reasonable topological structure of a cable harness and to search for the corresponding routes of such a harness.


2011 ◽  
Vol 71-78 ◽  
pp. 655-658
Author(s):  
Rong Qin

There are six basic control items, land saving, energy saving, water saving, material saving, indoor environment and operation, among which, only material saving are related to structure design. We followed the green building design concept and the control items list in those standards during structure design of one of the residential area in Sino-Singapore Tianjin Eco-city, which consist of 15~18-story residential building connected to a large underground garage, as is shown below.


2011 ◽  
Vol 347-353 ◽  
pp. 3046-3049
Author(s):  
Xing Jia Liu

According to the characteristics and difficulties of the soft-base coat drying, the approach of solving the temperature sensitivity through the furnace type structure design as well as the mechanical and electrical chain design is put forward. The form of the infrared radiation field used for soft-base coat drying is determined. By analyzing the characteristics of the infrared heating element and its reflection equipment, a mathematical model of radiation is proposed, and by using of the results and programs obtained from the model, the scientific design method of infrared radiation field is presented. The problem of requirements for uniform temperature of the soft-base coat is solved by infrared radiation field design and movement of belt. By taking the energy saving reconstruction of an infrared blast furnace as an instance, the effectiveness of the proposed method is verified. The design method not only has guiding significance to the design of soft-base coat infrared drying, but also has reference value to other types of infrared heating design for energy saving .


Author(s):  
Tomohiro Ryu ◽  
Takashi Kanemaru ◽  
Shiro Kataoka ◽  
Kiyoshi Arihama ◽  
Akira Yoshitake ◽  
...  

Author(s):  
Wenhui Li ◽  
Kang Liu ◽  
Qinghua Guo ◽  
Zhiming Zhang ◽  
Qiaoling Ji ◽  
...  

This paper proposes an optimization paradigm for structure design of curved-tube nozzle based on genetic algorithm. First, the mathematical model is established to reveal the functional relationship between outlet power and the nozzle structure parameters. Second, genetic algorithms transform the optimization process of curved-tube nozzle into natural evolution and selection. It is found that curved-tube nozzle with bending angle of 10.8°, nozzle diameter of 0.5 mm, and curvature radius of 8 mm yields maximum outlet power. Finally, we compare the optimal result with simulations and experiments of the rotating spinning. It is found that optimized curved-tube nozzle can improve flow field distribution and reduce the jet instability, which is critical to obtain high-quality nanofibers.


Sign in / Sign up

Export Citation Format

Share Document