scholarly journals Genetic Algorithm-Based Optimization of Curved-Tube Nozzle Parameters for Rotating Spinning

Author(s):  
Wenhui Li ◽  
Kang Liu ◽  
Qinghua Guo ◽  
Zhiming Zhang ◽  
Qiaoling Ji ◽  
...  

This paper proposes an optimization paradigm for structure design of curved-tube nozzle based on genetic algorithm. First, the mathematical model is established to reveal the functional relationship between outlet power and the nozzle structure parameters. Second, genetic algorithms transform the optimization process of curved-tube nozzle into natural evolution and selection. It is found that curved-tube nozzle with bending angle of 10.8°, nozzle diameter of 0.5 mm, and curvature radius of 8 mm yields maximum outlet power. Finally, we compare the optimal result with simulations and experiments of the rotating spinning. It is found that optimized curved-tube nozzle can improve flow field distribution and reduce the jet instability, which is critical to obtain high-quality nanofibers.

2021 ◽  
Vol 40 (4) ◽  
pp. 8493-8500
Author(s):  
Yanwei Du ◽  
Feng Chen ◽  
Xiaoyi Fan ◽  
Lei Zhang ◽  
Henggang Liang

With the increase of the number of loaded goods, the number of optional loading schemes will increase exponentially. It is a long time and low efficiency to determine the loading scheme with experience. Genetic algorithm is a search heuristic algorithm used to solve optimization in the field of computer science artificial intelligence. Genetic algorithm can effectively select the optimal loading scheme but unable to utilize weight and volume capacity of cargo and truck. In this paper, we propose hybrid Genetic and fuzzy logic based cargo-loading decision making model that focus on achieving maximum profit with maximum utilization of weight and volume capacity of cargo and truck. In this paper, first of all, the components of the problem of goods stowage in the distribution center are analyzed systematically, which lays the foundation for the reasonable classification of the problem of goods stowage and the establishment of the mathematical model of the problem of goods stowage. Secondly, the paper abstracts and defines the problem of goods loading in distribution center, establishes the mathematical model for the optimization of single car three-dimensional goods loading, and designs the genetic algorithm for solving the model. Finally, Matlab is used to solve the optimization model of cargo loading, and the good performance of the algorithm is verified by an example. From the performance evaluation analysis, proposed the hybrid system achieve better outcomes than the standard SA model, GA method, and TS strategy.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Yingfeng Zhao ◽  
Jianhua Liu ◽  
Jiangtao Ma ◽  
Linlin Wu

AbstractCurrent studies on cable harness layouts have mainly focused on cable harness route planning. However, the topological structure of a cable harness is also extremely complex, and the branch structure of the cable harness can affect the route of the cable harness layout. The topological structure design of the cable harness is a key to such a layout. In this paper, a novel multi-branch cable harness layout design method is presented, which unites the probabilistic roadmap method (PRM) and the genetic algorithm. First, the engineering constraints of the cable harness layout are presented. An obstacle-based PRM used to construct non-interference and near to the surface roadmap is then described. In addition, a new genetic algorithm is proposed, and the algorithm structure of which is redesigned. In addition, the operation probability formula related to fitness is proposed to promote the efficiency of the branch structure design of the cable harness. A prototype system of a cable harness layout design was developed based on the method described in this study, and the method is applied to two scenarios to verify that a quality cable harness layout can be efficiently obtained using the proposed method. In summary, the cable harness layout design method described in this study can be used to quickly design a reasonable topological structure of a cable harness and to search for the corresponding routes of such a harness.


2014 ◽  
Vol 527 ◽  
pp. 140-145
Author(s):  
Da Xu Zhao ◽  
Bai Chen ◽  
Guo Zhong Shou ◽  
Yu Qi Gu

In view of the existing problems of traditional interventional catheters, particularly poor activity, operation difficulty and mass blind area, a novel interventional catheter with a cable-driven active head-end is proposed, and a prototype was built to verify the performance. This paper deals with the kinematics and dynamics of the cable-driven prototype, a dynamic model based on Kanes method combined with screw theory was presented in this paper. According the mathematical model and the prototypes structure, the analysis of kinematics and dynamics of active head-end-end is done in the environment of Mathematica. The needed driving forces of every joint when the system moving along planned trajectory are calculated. The results can provide a basis for the structure design and motion control of the interventional active catheter.


2021 ◽  
Author(s):  
Mojtaba Kamarlouei ◽  
Thiago S. Hallak ◽  
Jose F. Gaspar ◽  
Miguel Calvário ◽  
C. Guedes Soares

Abstract This paper presents the adaptation of a torus wave energy converter prime mover to an onshore or nearshore fixed platform, by a hinged arm. An optimization code is developed to obtain the best torus and arm geometry, as well as the power take-off parameters, taking as objective function the maximization of total wave absorbed power. In this paper, the power take-off system is modelled as a simplified damper and spring system, where the parameters are optimized for the phase control of the wave energy converter in each sea state, whereas the optimization process is performed with a genetic algorithm. Finally, the optimal result for the productive sea state indicates that the absorbed power is relatively considerable while a better survivability performance is expected from a torus wave energy converter compared to a conventional truncated prime mover.


2012 ◽  
Vol 16 (suppl. 1) ◽  
pp. 237-250 ◽  
Author(s):  
Velimir Congradac ◽  
Bosko Milosavljevic ◽  
Jovan Velickovic ◽  
Bogdan Prebiracevic

The manufacturing, distribution and use of electricity are of fundamental importance for the social life and they have the biggest influence on the environment associated with any human activity. The energy needed for building lighting makes up 20-40% of the total consumption. This paper displays the development of the mathematical model and genetic algorithm for the control of dimmable lighting on problems of regulating the level of internal lighting and increase of energetic efficiency using daylight. A series of experiments using the optimization algorithm on the realized model confirmed very high savings in electricity consumption.


Sign in / Sign up

Export Citation Format

Share Document