Lysine-Specific Demethylase 4A Regulates Osteogenic Differentiation via Regulating the Binding Ability of H3K9me3 with the Promoters of Runx2, Osterix and Osteocalcin

2020 ◽  
Vol 16 (6) ◽  
pp. 899-909
Author(s):  
Guozhong Qin ◽  
Yikai Li ◽  
Haibin Wang ◽  
Junxing Yang ◽  
Qunqun Chen ◽  
...  

A well-studied subject of epigenetics, the histone methylation located at lysine and arginine is overseen via methyltransferases and demethylases. Lysine-specific demethylase 4A (KDM4A) comprises a lysine demethylase and possesses specificity for H3K9me3 and H3K36me3, which is capable of being used in order to activate histone transcription. Our team examined the expression of KDM4A within Sprague Dawley (SD) rats and further investigated the mechanism via which this phenomena regulates osteogenic variation within the present study. The overexpression of KDM4A facilitated the process of osteoblast differentiation in bone mesenchymal stem cells (BMSC), while the knocking down differentiation via osteoblast was restrained via the suppression of the expression of Runx2, Osterix, alkaline phosphatase (ALP), and osteocalcin (OCN). Knocking down KDM4A lowered levels of the promoter expression of Runx2, osterix, and OCN, and raised levels of H3K27me3 expression. The results demonstrated that KDM4A possesses a crucial role within the differentiation of osteoblasts and furthermore regulates the expression of Runx2, Osterix, and OCN via H3K9me3. The present research may provide new insights into the treatment of bone healing.

2021 ◽  
pp. 1-20
Author(s):  
Juandré Lambertus Bernardus Saayman ◽  
Stephanus Frederik Steyn ◽  
Christiaan Beyers Brink

Abstract Objective: To investigate the long-term effects of juvenile sub-chronic sildenafil (SIL) treatment on the depressive-like behaviour and hippocampal brain-derived neurotrophic factor (BDNF) levels of adult Sprague-Dawley (SD) versus Flinders Sensitive Line (FSL) rats. Methods: SD and FSL rats were divided into pre-pubertal and pubertal groups, whereafter 14-day saline or SIL treatment was initiated. Pre-pubertal and pubertal rats were treated from postnatal day 21 (PND21) and PND35, respectively. The open field and forced swim tests (FST) were performed on PND60, followed by hippocampal BDNF level analysis one day later. Results: FSL rats displayed greater immobility in the FST compared to SD rats (p < 0.0001), which was reduced by SIL (p < 0.0001), regardless of treatment period. Hippocampal BDNF levels were unaltered by SIL in all treatment groups (p > 0.05). Conclusion: Juvenile sub-chronic SIL treatment reduces the risk of depressive-like behaviour manifesting during young adulthood in genetically susceptible rats.


Author(s):  
Shu-Chieh Hu ◽  
Matthew S Bryant ◽  
Estatira Sepehr ◽  
Hyun-Ki Kang ◽  
Raul Trbojevich ◽  
...  

Abstract The tobacco-specific nitrosamine NNK [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone] is found in tobacco products and tobacco smoke. NNK is a potent genotoxin and human lung carcinogen; however, there are limited inhalation data for the toxicokinetics (TK) and genotoxicity of NNK in vivo. In the present study, a single dose of 5x10−5, 5x10−3, 0.1, or 50 mg/kg body weight (BW) of NNK, 75% propylene glycol (vehicle control), or air (sham control) was administered to male Sprague-Dawley (SD) rats (9-10 weeks age) via nose-only inhalation (INH) exposure for 1 hour. For comparison, the same doses of NNK were administered to male SD rats via intraperitoneal (IP) injection and oral gavage (PO). Plasma, urine, and tissue specimens were collected at designated timepoints and analyzed for levels of NNK and its major metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and tissue levels of DNA adduct O6-methylguanine by LC/MS/MS. TK data analysis was performed using a non-linear regression program. For the genotoxicity subgroup, tissues were collected at 3 hours post-dosing for comet assay analysis. Overall, the TK data indicated that NNK was rapidly absorbed and metabolized extensively to NNAL after NNK administration via the three routes. The IP route had the greatest systemic exposure to NNK. NNK metabolism to NNAL appeared to be more efficient via INH than IP or PO. NNK induced significant increases in DNA damage in multiple tissues via the three routes. The results of this study provide new information and understanding of the toxicokinetics and genotoxicity of NNK.


2015 ◽  
Vol 112 (41) ◽  
pp. 12711-12716 ◽  
Author(s):  
Andrea M. Brum ◽  
Jeroen van de Peppel ◽  
Cindy S. van der Leije ◽  
Marijke Schreuders-Koedam ◽  
Marco Eijken ◽  
...  

Osteoporosis is a common skeletal disorder characterized by low bone mass leading to increased bone fragility and fracture susceptibility. In this study, we have identified pathways that stimulate differentiation of bone forming osteoblasts from human mesenchymal stromal cells (hMSCs). Gene expression profiling was performed in hMSCs differentiated toward osteoblasts (at 6 h). Significantly regulated genes were analyzed in silico, and the Connectivity Map (CMap) was used to identify candidate bone stimulatory compounds. The signature of parbendazole matches the expression changes observed for osteogenic hMSCs. Parbendazole stimulates osteoblast differentiation as indicated by increased alkaline phosphatase activity, mineralization, and up-regulation of bone marker genes (alkaline phosphatase/ALPL, osteopontin/SPP1, and bone sialoprotein II/IBSP) in a subset of the hMSC population resistant to the apoptotic effects of parbendazole. These osteogenic effects are independent of glucocorticoids because parbendazole does not up-regulate glucocorticoid receptor (GR) target genes and is not inhibited by the GR antagonist mifepristone. Parbendazole causes profound cytoskeletal changes including degradation of microtubules and increased focal adhesions. Stabilization of microtubules by pretreatment with Taxol inhibits osteoblast differentiation. Parbendazole up-regulates bone morphogenetic protein 2 (BMP-2) gene expression and activity. Cotreatment with the BMP-2 antagonist DMH1 limits, but does not block, parbendazole-induced mineralization. Using the CMap we have identified a previously unidentified lineage-specific, bone anabolic compound, parbendazole, which induces osteogenic differentiation through a combination of cytoskeletal changes and increased BMP-2 activity.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Daria Golosova ◽  
Adrian Zietara ◽  
Ruslan Bohovyk ◽  
Vladislav Levchenko ◽  
Alexander Staruschenko

The extensive use of opioid-based pain management strongly correlates with poor cardiovascular and cardiorenal outcomes. Our recent studies suggest that treatment with kappa opioid receptor (KOR) agonist BRL 52537 leads to the progression of chronic kidney disease (CKD) and aggravation of salt-sensitive hypertension. We hypothesize that stimulation of KORs leads to blood pressure elevation, albuminuria, and kidney damage in healthy Sprague-Dawley (SD) rats. To characterize the effect of the KOR agonist BRL 52537 on the development of blood pressure and kidney function in vivo , SD rats were treated with a daily i.v. bolus infusion of BRL 52537 or a corresponding vehicle. To test the contribution of KOR stimulation on calcium homeostasis in podocytes, BRL 52537 was used on freshly isolated glomeruli from SD rats. Single-channel analysis was applied to assess the effect of KORs stimulation on TRPC6 channel activity in the human immortalized podocytes. Chronic treatment with BRL 52537 leads to increased mean arterial pressure (88±1 vs 101±4 mmHg, vehicle vs treated, p<0.05), podocyte basal calcium (90±12 vs 216±16 a.u., vehicle vs treated, p<0.05), and GFB impairment in SD rats which is reflected by a transient increase in albumin excretion (Alb/cre ratio 0.35±0.1 vs 0.72±0.2, vehicle vs treated, p<0.05). Cumulative probability distribution analysis of the glomerular injury score revealed a rightward shift toward a high glomerular injury score in the group treated with BRL 52537 (p<0.05). Angiotensin II level was higher in a BRL-treated group (156±17 vs 232±59 pmol, vehicle vs treated, p=0.065); however, it did not reach a statistical difference. Acute application of BRL 52537 resulted in sustained calcium response (0.23±0.01 a.u., Fluo4/FuraRed, maximum calcium response) in freshly isolated glomeruli from SD rats. Furthermore, patch-clamp experiments in human immortalized podocytes (cell-attached configuration) revealed that BRL 52537 activated TRPC6 channels. Taken together, these data support the hypothesis that administration of opioids in SD rats leads to activation of the KOR/TRPC6 pathway, which in turn led to glomerular filtration barrier impairment, increased glomerular damage, and blood pressure elevation.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Tao Yang ◽  
Ty Redler ◽  
Carla G Bueno Silva ◽  
Rebeca Arocha ◽  
Jordan Schmidt ◽  
...  

Emerging evidence demonstrates a significant link between gut dysbiosis and hypertension (HTN). Butyrate is one of the major fermented end-products of gut microbiota that reportedly produces beneficial effects on the immune system and metabolism. A contraction in butyrate-producing bacteria in the gut of spontaneously hypertensive rats (SHR) suggests that reduced butyrate may be associated with HTN. Considering its role in mitochondrial metabolism, we proposed that the positive anti-inflammatory effects of butyrate may be mediated via improvement in mitochondrial function in astrocytes. Methods: Sprague Dawley (SD) and SHR primary astrocytes from two-day old pups were cultured in DMEM, supplemented with 10% FBS and 1% pen/strep, for 14 days, prior to treatment with butyrate (0-1mM) for 4 hours. Cells were then subjected to the Seahorse XFe24 Extracellular Flux Analyzer to evaluate mitochondrial function following butyrate treatment. Additional samples were collected for total RNA isolation for real time PCR analysis of inflammatory factors and transcripts related to mitochondrial function and stress. Results: Butyrate significantly increased both basal and maximal mitochondrial respiration (by 3-4 fold, P<0.001) and elevated proton leak (by 4 fold, P<0.01) in astrocytes from SD rats but not SHR. Furthermore, we observed a trend for an increase in both ATP-linked and non-mitochondrial respiration in SD astrocytes compared to SHR (by 2-3 fold, P=0.07). This was associated with a significant reduction in relative expression levels in catalase (by 50%, P<0.05) and a trend in reduction in Sod1 and Sod2 (by 25%-50%, P=0.1) in astrocytes harvested from SD rats but not the SHR. Conversely, butyrate significantly lowered expression of pro-inflammatory Ccl2 (by 33%, P<0.05) and Tlr4 (by 48%, P <0.05) in astrocytes of SHR, but not SD rats. Conclusion: Butyrate modulated mitochondrial bioenergetics in SD but not the SHR, suggesting that the mitochondria of astrocytes may be less sensitive to the effects of butyrate in HTN. In addition, butyrate reduced inflammatory mediators in the SHR, but had no effect in the SD rat astrocytes. Thus, central anti-inflammatory effects of butyrate may be mediated via a mitochondria-independent mechanism.


2012 ◽  
Vol 27 (5) ◽  
pp. 301-305 ◽  
Author(s):  
Baohua Zhu ◽  
Chuanming Tong ◽  
Weitao Guo ◽  
Rong Pu ◽  
Guoping Zhang ◽  
...  

PURPOSE: To investigate synergistic suppression of donor liver pre-perfusion with recipient serum (RS) and cobra venom factor (CVF) treatment on hyperacute rejection (HAR) following liver xenotransplantation. METHODS: Guinea-pigs (GP, n=24) and Sprague-Dawley rats (SD, n=24) were recruited. Before transplantation, serum was collected from SD rats and used for preparation of inactivated complements. GP and SD rats were randomly assigned into four groups (n=6), respectively: RS group, CVF group, RS+CVF group and control group. Orthotopic liver xenotransplantation was performed with modified two-cuff technique. The survival time and liver function of recipients, morphological and pathological changes in rat livers were investigated. RESULTS: There was no piebald like change in the recipient livers in all experiment groups. The survival time of recipients in all experiment groups was longer than that in control group (p<0.05). Moreover, the survival time in the RS+CVF group was markedly longer than that in the RS group (p<0.01) and CVF group (p<0.05). The serum ALT level in all experiment groups were lower than that in the control group (p<0.05). Furthermore, the ALT level in the RS+CVF group was significantly lower than that in the CVF group (p<0.05) and RS group (p<0.01). The histological damages were significantly improved when compared with the control group, and the histological damages in the RS+CVF group were milder than those in the remaining groups (p<0.05) CONCLUSION: Pre-perfusion of donor liver with recipient serum and cobra venom factor treatment can exert synergistic suppressive effects on the hyperacute rejection following liver xenotransplantation.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Li Li ◽  
Zongqiang Hu ◽  
Wen Li ◽  
Mingdao Hu ◽  
Jianghua Ran ◽  
...  

Objective. To establish a standardized animal model for liver fibrosis with the same assessment criteria for liver fibrosis studies that have been established on a unified platform.Methods. The standardized liver fibrosis model was established using Sprague-Dawley (SD) rats that either received an intraperitoneal injection of carbon tetrachloride (CCl4) in small dosages or ingested an ethanol solution.Results. The definite corresponding rules among modeling of different weeks and corresponding serology indices as well as different pathological staging can be observed by modeling with small dosages and slow, individualized, and combined administrations.Conclusion. This method can be used for the standardized establishment of a liver fibrosis model in rats across 5 pathological stages, ranging from S0 to S4, with a high success rate (89.33%) and low death rate (17.3%) because of the application of multiple hypotoxic chemicals for modeling. We refer to the criteria of Histological Grading and Staging of Chronic Hepatitis for Fibrosis established by the 10th World Digestive Disease Academic Conference in Los Angeles in September 1994 (revised in November 2000).


Sign in / Sign up

Export Citation Format

Share Document