Mesoporous Bioactive Glass Promoted Osteoblast Proliferation and Differentiation In Vitro

2019 ◽  
Vol 9 (4) ◽  
pp. 462-467
Author(s):  
Jianwei Chen ◽  
Xiaosheng Yu ◽  
Hao Ji ◽  
Zhen Zong ◽  
Wei Hong ◽  
...  
2013 ◽  
Vol 1 (41) ◽  
pp. 5711-5722 ◽  
Author(s):  
Yufeng Zhang ◽  
Lingfei Wei ◽  
Jiang Chang ◽  
Richard J. Miron ◽  
Bin Shi ◽  
...  

Sr-containing mesoporous bioactive glass scaffolds significantly enhanced the regeneration of osteoporotic bone defects.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 34
Author(s):  
Shaher Bano ◽  
Memoona Akhtar ◽  
Muhammad Yasir ◽  
Muhammad Salman Maqbool ◽  
Akbar Niaz ◽  
...  

Biomedical implants are the need of this era due to the increase in number of accidents and follow-up surgeries. Different types of bone diseases such as osteoarthritis, osteomalacia, bone cancer, etc., are increasing globally. Mesoporous bioactive glass nanoparticles (MBGNs) are used in biomedical devices due to their osteointegration and bioactive properties. In this study, silver (Ag)- and strontium (Sr)-doped mesoporous bioactive glass nanoparticles (Ag-Sr MBGNs) were prepared by a modified Stöber process. In this method, Ag+ and Sr2+ were co-substituted in pure MBGNs to harvest the antibacterial properties of Ag ions, as well as pro-osteogenic potential of Sr2 ions. The effect of the two-ion concentration on morphology, surface charge, composition, antibacterial ability, and in-vitro bioactivity was studied. Scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) confirmed the doping of Sr and Ag in MBGNs. SEM and EDX analysis confirmed the spherical morphology and typical composition of MBGNs, respectively. The Ag-Sr MBGNs showed a strong antibacterial effect against Staphylococcus carnosus and Escherichia coli bacteria determined via turbidity and disc diffusion method. Moreover, the synthesized Ag-Sr MBGNs develop apatite-like crystals upon immersion in simulated body fluid (SBF), which suggested that the addition of Sr improved in vitro bioactivity. The Ag-Sr MBGNs synthesized in this study can be used for the preparation of scaffolds or as a filler material in the composite coatings for bone tissue engineering.


2016 ◽  
Vol 8 (18) ◽  
pp. 11342-11354 ◽  
Author(s):  
Chengtie Wu ◽  
Lunguo Xia ◽  
Pingping Han ◽  
Lixia Mao ◽  
Jiacheng Wang ◽  
...  

2021 ◽  
Vol 33 (2) ◽  
pp. 82-89
Author(s):  
Yasmeen Mezil ◽  
Joyce Obeid ◽  
Inna Ushcatz ◽  
Sandeep Raha ◽  
Brian W. Timmons

Purpose: In girls and women, the authors studied the effects of an acute bout of low-impact, moderate-intensity exercise serum on myoblast and osteoblast proliferation in vitro. Methods: A total of 12 pre/early pubertal girls (8–10 y old) and 12 women (20–30 y old) cycled at 60% VO2max for 1 hour followed by 1-hour recovery. Blood samples were collected at rest, mid-exercise, end of exercise, mid-recovery, and end of recovery. C2C12 myoblasts and MC3T3E1 osteoblasts were incubated with serum from each time point for 1 hour, then monitored for 24 hours (myoblasts) or 36 hours (osteoblasts) to examine proliferation. Cells were also monitored for 6 days (myoblasts) to examine myotube formation and 21 days (osteoblasts) to examine mineralization. Results: Exercise did not affect myoblast or osteoblast proliferation. Girls exhibited lower cell proliferation relative to women at end of exercise (osteoblasts, P = .041; myoblasts, P = .029) and mid-recovery (osteoblasts, P = .010). Mineralization was lower at end of recovery relative to rest (P = .014) in both girls and women. Myotube formation was not affected by exercise or group. Conclusion: The systemic environment following one acute bout of low-impact moderate-intensity exercise in girls and women does not elicit osteoblast or myoblast activity in vitro. Differences in myoblast and osteoblast proliferation between girls and women may be influenced by maturation.


2005 ◽  
Vol 288-289 ◽  
pp. 429-432 ◽  
Author(s):  
Zhi Qing Chen ◽  
Quan Li Li ◽  
Quan Zen ◽  
Gang Li ◽  
Hao Bin Jiang ◽  
...  

Phosphorylated chitosans were synthesized as templates to manipulate hydroxyapatite (HA) crystal nucleation, growth and microstructure. Two kinds of insoluble phosphorylated chitosan were soaked in saturated Ca(OH)2 solution for 4 d and in 1.5× SBF (simulated body fluid) solutions for 14 d at 37 °C for biomimetic mineralization. A lower [P]-content of phosphorylated chitosan promoted greater mineralization than higher [P]-content. Phosphorylated chitosan inhibited osteoblast proliferation and differentiation in vitro, while calcium phosphate phosphorylated chitosan composites did not.


2020 ◽  
Vol 12 (4) ◽  
pp. 455-460
Author(s):  
Yuan Wu ◽  
Cuizhong Liu ◽  
Ming Gao ◽  
Qiang Liang ◽  
Yu Jiang

This study aimed to observe the effect of titanium nanomaterials on osteoblastsin vitro. Osteoblasts were identified using histochemical staining, and they were examined using an MTT (3-(4,5Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay to determine the proliferation and differentiation of osteoblasts. In addition, we observed the effect of titanium nanomaterials on the function of osteoblasts. Compared with the control group, titanium nanomaterials promoted the growth, proliferation, and differentiation of osteoblasts. Our findings showed that titanium nanomaterials can significantly promote the proliferation of osteoblasts and enhance their osteogenic activity.


2004 ◽  
Vol 75 (2) ◽  
pp. 160-168 ◽  
Author(s):  
R. O. Moreira ◽  
A. Balduíno ◽  
H. S. L. H. Martins ◽  
J. S. N. Reis ◽  
M. E. L. Duarte ◽  
...  

2013 ◽  
Vol 750-752 ◽  
pp. 1651-1655
Author(s):  
Bai Yan Sui ◽  
Cheng Tie Wu ◽  
Jiao Sun

Mesoporous bioactive glass (MBG) has superior bioactivity and degradation than non-mesoporous bioactive glass (BG) in vitro. But the biological effect of MBG in vivo is still unknown. In this study, MBG powders with 20μm were implanted into the femoral condyles in SD rats. BG powders with 20μm were used as a control. The local degradation and osteogenesis were observed at 1 week and 4 weeks after implantation, and the systemic toxicity of the degradation products were also evaluated simultaneously. The results revealed MBG powders had the faster rate of degradation and better osteogenesis effect than BG powders at 4 weeks, although the most of material still remained in situ. Histopathological analyses indicated the degradation products did not have any damage to major organs such as liver and kidney. In conclusion, this preliminary study demonstrated that MBG powders have more excellent biological effect at 4 weeks than that of BG in vivo. However the long-term effect needs to be confirmed.


Sign in / Sign up

Export Citation Format

Share Document