The Effect of POSS-COOH/Silicone Rubber (SR) on the Adipogenesis Differentiation of Mesenchymal Stem Cells

2019 ◽  
Vol 9 (6) ◽  
pp. 760-769
Author(s):  
Yichen Du ◽  
Xiaohua Shi ◽  
Xin Zhou ◽  
Yao Chen ◽  
Hailin Wang ◽  
...  

The aim of this study was to prepare an engraving silicone rubber (SR) material with good biocompatibility and functionality. SR with different POSS-COOH proportions was produced by mixing POSS-COOH nanoparticles in medical liquid silicone. The viability, adhesion and differentiation of MSCs on the surface of the modified materials were examined. Compared with virgin SR, the hydrophilic property of the composites was obviously increased and hardness was decreased; however, there was no obvious change in the surface morphology of the POSS-COOH/SR. The results of MTT showed that the viability of MSCs on POSS-COOH/SR was significantly suppressed (P < 0.05). Furthermore, POSS-COOH/SR was able to induce significant adipogenesis differentiation of MSCs. Our results demonstrated POSS-COOH/SR not only improves cell compatibility, it promotes the adipogenic differentiation of MSCs. It may be used as a new soft tissue-filling material in the field of plastic surgery.

Author(s):  
Bruna O. S. Câmara ◽  
Bruno M. Bertassoli ◽  
Natália M. Ocarino ◽  
Rogéria Serakides

The use of stem cells in cell therapies has shown promising results in the treatment of several diseases, including diabetes mellitus, in both humans and animals. Mesenchymal stem cells (MSCs) can be isolated from various locations, including bone marrow, adipose tissues, synovia, muscles, dental pulp, umbilical cords, and the placenta. In vitro, by manipulating the composition of the culture medium or transfection, MSCs can differentiate into several cell lineages, including insulin-producing cells (IPCs). Unlike osteogenic, chondrogenic, and adipogenic differentiation, for which the culture medium and time are similar between studies, studies involving the induction of MSC differentiation in IPCs differ greatly. This divergence is usually evident in relation to the differentiation technique used, the composition of the culture medium, the cultivation time, which can vary from a few hours to several months, and the number of steps to complete differentiation. However, although there is no “gold standard” differentiation medium composition, most prominent studies mention the use of nicotinamide, exedin-4, ß-mercaptoethanol, fibroblast growth factor b (FGFb), and glucose in the culture medium to promote the differentiation of MSCs into IPCs. Therefore, the purpose of this review is to investigate the stages of MSC differentiation into IPCs both in vivo and in vitro, as well as address differentiation techniques and molecular actions and mechanisms by which some substances, such as nicotinamide, exedin-4, ßmercaptoethanol, FGFb, and glucose, participate in the differentiation process.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 781 ◽  
Author(s):  
Paula E. Florian ◽  
Liviu Duta ◽  
Valentina Grumezescu ◽  
Gianina Popescu-Pelin ◽  
Andrei C. Popescu ◽  
...  

This study is focused on the adhesion and differentiation of the human primary mesenchymal stem cells (hMSC) to osteoblasts lineage on biological-derived hydroxyapatite (BHA) and lithium-doped BHA (BHA:LiP) coatings synthesized by Pulsed Laser Deposition. An optimum adhesion of the cells on the surface of BHA:LiP coatings compared to control (uncoated Ti) was demonstrated using immunofluorescence labelling of actin and vinculin, two proteins involved in the initiation of the cell adhesion process. BHA:LiP coatings were also found to favor the differentiation of the hMSC towards an osteoblastic phenotype in the presence of osteoinductive medium, as revealed by the evaluation of osteoblast-specific markers, osteocalcin and alkaline phosphatase. Numerous nodules of mineralization secreted from osteoblast cells grown on the surface of BHA:LiP coatings and a 3D network-like organization of cells interconnected into the extracellular matrix were evidenced. These findings highlight the good biocompatibility of the BHA coatings and demonstrate that the use of lithium as a doping agent results in an enhanced osteointegration potential of the synthesized biomaterials, which might therefore represent viable candidates for future in vivo applications.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1831
Author(s):  
Thitianan Kulsirirat ◽  
Sittisak Honsawek ◽  
Mariko Takeda-Morishita ◽  
Nuttanan Sinchaipanid ◽  
Wanvisa Udomsinprasert ◽  
...  

Andrographolide is a labdane diterpenoid herb, which is isolated from the leaves of Andrographis paniculata, and widely used for its potential medical properties. However, there are no reports on the effects of andrographolide on the human suprapatellar fat pad of osteoarthritis patients. In the present study, our goal was to evaluate the innovative effects of andrographolide on viability and Tri-lineage differentiation of human mesenchymal stem cells from suprapatellar fat pad tissues. The results revealed that andrographolide had no cytotoxic effects when the concentration was less than 12.5 µM. Interestingly, andrographolide had significantly enhanced, dose dependent, osteogenesis and chondrogenesis as evidenced by a significantly intensified stain for Alizarin Red S, Toluidine Blue and Alcian Blue. Moreover, andrographolide can upregulate the expression of genes related to osteogenic and chondrogenic differentiation, including Runx2, OPN, Sox9, and Aggrecan in mesenchymal stem cells from human suprapatellar fat pad tissues. In contrast, andrographolide suppressed adipogenic differentiation as evidenced by significantly diminished Oil Red O staining and expression levels for adipogenic-specific genes for PPAR-γ2 and LPL. These findings confirm that andrographolide can specifically enhance osteogenesis and chondrogenesis of mesenchymal stem cells from human suprapatellar fat pad tissues. It has potential as a therapeutic agent derived from natural sources for regenerative medicine.


2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Chad M. Teven ◽  
Xing Liu ◽  
Ning Hu ◽  
Ni Tang ◽  
Stephanie H. Kim ◽  
...  

Stem cells are characterized by their capability to self-renew and terminally differentiate into multiple cell types. Somatic or adult stem cells have a finite self-renewal capacity and are lineage-restricted. The use of adult stem cells for therapeutic purposes has been a topic of recent interest given the ethical considerations associated with embryonic stem (ES) cells. Mesenchymal stem cells (MSCs) are adult stem cells that can differentiate into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Owing to their ease of isolation and unique characteristics, MSCs have been widely regarded as potential candidates for tissue engineering and repair. While various signaling molecules important to MSC differentiation have been identified, our complete understanding of this process is lacking. Recent investigations focused on the role of epigenetic regulation in lineage-specific differentiation of MSCs have shown that unique patterns of DNA methylation and histone modifications play an important role in the induction of MSC differentiation toward specific lineages. Nevertheless, MSC epigenetic profiles reflect a more restricted differentiation potential as compared to ES cells. Here we review the effect of epigenetic modifications on MSC multipotency and differentiation, with a focus on osteogenic and adipogenic differentiation. We also highlight clinical applications of MSC epigenetics and nuclear reprogramming.


2021 ◽  
Vol 11 (10) ◽  
pp. 2070-2075
Author(s):  
Wenji Shi ◽  
Mingxing Zhao ◽  
Guangxia Shi

Bone marrow mesenchymal stem cells (BMSCs) have self-renewal potential. Sirt1 regulates cell differentiation and apoptosis. However, Sirt1’s effect on BMSCs osteogenic/adipogenic differentiation has not been fully elucidated. SD rats were randomly divided into Osteoporosis (OP) group and sham operation group. OP rat BMSCs were isolated and assigned into control group, NC group and Sirt1 siRNA group followed by analysis of Sirt1 level by Real-time PCR, cell proliferation by MTT assay, expression of OC, OPN and FABP4 level by real time PCR, and β-Catenin/TCF1/Runx2 protein expression by Western blot. In OP group, Sirt1 expression was significantly increased and BMSCs proliferation was decreased along with reduced OC and OPN mRNA expression, increased FABP4 expression and reduced β-Catenin/TCF1/Runx2 expression compared with sham operation group (P < 0.05). In Sirt1 siRNA group, Sirt1 expression was significantly reduced, BMSCs proliferation was increased, OC and OPN mRNA expression was increased, FABP4 expression was decreased, and β-Catenin/TCF1/Runx2 expression was increased compared to OP group (P < 0.05). Sirt1 is increased in osteoporosis. Down-regulating Sirt1 in osteoporotic BMSCs can regulate β-Catenin/TCF1/Runx2 signaling and promote BMSCs osteogenic differentiation and inhibit adipogenic differentiation.


Sign in / Sign up

Export Citation Format

Share Document