scholarly journals The Effects of Andrographolide on the Enhancement of Chondrogenesis and Osteogenesis in Human Suprapatellar Fat Pad Derived Mesenchymal Stem Cells

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1831
Author(s):  
Thitianan Kulsirirat ◽  
Sittisak Honsawek ◽  
Mariko Takeda-Morishita ◽  
Nuttanan Sinchaipanid ◽  
Wanvisa Udomsinprasert ◽  
...  

Andrographolide is a labdane diterpenoid herb, which is isolated from the leaves of Andrographis paniculata, and widely used for its potential medical properties. However, there are no reports on the effects of andrographolide on the human suprapatellar fat pad of osteoarthritis patients. In the present study, our goal was to evaluate the innovative effects of andrographolide on viability and Tri-lineage differentiation of human mesenchymal stem cells from suprapatellar fat pad tissues. The results revealed that andrographolide had no cytotoxic effects when the concentration was less than 12.5 µM. Interestingly, andrographolide had significantly enhanced, dose dependent, osteogenesis and chondrogenesis as evidenced by a significantly intensified stain for Alizarin Red S, Toluidine Blue and Alcian Blue. Moreover, andrographolide can upregulate the expression of genes related to osteogenic and chondrogenic differentiation, including Runx2, OPN, Sox9, and Aggrecan in mesenchymal stem cells from human suprapatellar fat pad tissues. In contrast, andrographolide suppressed adipogenic differentiation as evidenced by significantly diminished Oil Red O staining and expression levels for adipogenic-specific genes for PPAR-γ2 and LPL. These findings confirm that andrographolide can specifically enhance osteogenesis and chondrogenesis of mesenchymal stem cells from human suprapatellar fat pad tissues. It has potential as a therapeutic agent derived from natural sources for regenerative medicine.

2021 ◽  
Author(s):  
Kannan Govindaraj ◽  
Sakshi Khurana ◽  
Marcel Karperien ◽  
Janine Nicole Post

The master transcription factor SOX9 is a key player during chondrocyte differentiation, cartilage development, homeostasis and disease. Modulation of SOX9 and its target gene expression is essential during chondrogenic, osteogenic and adipogenic differentiation of human mesenchymal stem cells (hMSCs). However, lack of sufficient knowledge about the signaling interplay during differentiation remains one of the main reasons preventing successful application of hMSCs in regenerative medicine. We previously showed that Transcription Factor - Fluorescence Recovery After Photobleaching (TF-FRAP) can be used to study SOX9 dynamics at the single cell level. We showed that changes in SOX9 dynamics are linked to its transcriptional activity. Here, we investigated SOX9 dynamics during differentiation of hMSCs into the chondrogenic, osteogenic and adipogenic lineages. We show that there are clusters of cells in hMSCs with distinct SOX9 dynamics, indicating that there are a number of subpopulations present in the heterogeneous hMSCs. SOX9 dynamics data at the single cell resolution revealed novel insights about its activity in these subpopulations (cell types). In addition, the response of SOX9 to differentiation stimuli varied in these subpopulations. Moreover, we identified donor specific differences in the number of cells per cluster in undifferentiated hMSCs, and this correlated to their differentiation potential.


PPAR Research ◽  
2007 ◽  
Vol 2007 ◽  
pp. 1-7 ◽  
Author(s):  
Daniel Rivas ◽  
Rahima Akter ◽  
Gustavo Duque

Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγactivity was determined using an ELISA-based PPARγactivation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγexpression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγactivity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγexpression and activity.


2018 ◽  
Author(s):  
Sanjay K. Kureel ◽  
Pankaj Mogha ◽  
Akshada Khadpekar ◽  
Vardhman Kumar ◽  
Rohit Joshi ◽  
...  

AbstractHuman mesenchymal stem cells (hMSCs), when cultured on tissue culture plate (TCP) for in vitro expansion, they spontaneously lose their proliferative capacity and multi-lineage differentiation potential. They also lose their distinct spindle morphology and become large and flat. After a certain number of population doubling, they enter into permanent cell cycle arrest, called senescence. This is a major roadblock for clinical use of hMSCs which demands large number of cells. A cell culture system is needed which can maintain the stemness of hMSCs over long term passages yet simple to use. In this study, we explore the role of substrate rigidity in maintaining stemness. hMSCs were serially passaged on TCP and 5 kPa poly-acrylamide gel for 20 population doubling. It was found that while on TCP, cell growth reached a plateau at cumulative population doubling (CPD) = 12.5, on 5 kPa gel, they continue to proliferate linearly till we monitored (CPD = 20). We also found that while on TCP, late passage MSCs lost their adipogenic potential, the same was maintained on soft gel. Cell surface markers related to MSCs were also unaltered. We demonstrated that this maintenance of stemness was correlated with delay in onset of senescence, which was confirmed by β-gal assay and by differential expression of vimentin, Lamin A and Lamin B. As preparation of poly-acrylamide gel is a simple, well established, and well standardized protocol, we believe that this system of cell expansion will be useful in therapeutic and research applications of hMSCs.One Sentence SummaryhMSCs retain their stemness when expanded in vitro on soft polyacrylamide gel coated with collagen by delaying senescence.Significance StatementFor clinical applications, mesenchymal stem cells (MSCs) are required in large numbers. As MSCs are available only in scarcity in vivo, to fulfill the need, extensive in vitro expansion is unavoidable. However, on expansion, they lose their replicative and multi-lineage differentiation potential and become senescent. A culture system that can maintain MSC stemness on long-term expansion, without compromising the stemness, is need of the hour. In this paper, we identified polyacrylamide (PAA) hydrogel of optimum stiffness that can be used to maintain stemness of MSCs during in vitro long term culture. Large quantity of MSCs thus grown can be used in regenerative medicine, cell therapy, and in treatment of inflammatory diseases.


2010 ◽  
Vol 468 (3) ◽  
pp. 190-194 ◽  
Author(s):  
Heejaung Kim ◽  
Hyun Young Kim ◽  
Mi Ran Choi ◽  
Sejin Hwang ◽  
Ki-Hoan Nam ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Yu Zhang ◽  
Dilaware Khan ◽  
Julia Delling ◽  
Edda Tobiasch

Human mesenchymal stem cells (hMSCs) are considered a promising cell source for regenerative medicine, because they have the potential to differentiate into a variety of lineages among which the mesoderm-derived lineages such adipo- or osteogenesis are investigated best. Human MSCs can be harvested in reasonable to large amounts from several parts of the patient’s body and due to this possible autologous origin, allorecognition can be avoided. In addition, even in allogenic origin-derived donor cells, hMSCs generate a local immunosuppressive microenvironment, causing only a weak immune reaction. There is an increasing need for bone replacement in patients from all ages, due to a variety of reasons such as a new recreational behavior in young adults or age-related diseases. Adipogenic differentiation is another interesting lineage, because fat tissue is considered to be a major factor triggering atherosclerosis that ultimately leads to cardiovascular diseases, the main cause of death in industrialized countries. However, understanding the differentiation process in detail is obligatory to achieve a tight control of the process for future clinical applications to avoid undesired side effects. In this review, the current findings for adipo- and osteo-differentiation are summarized together with a brief statement on first clinical trials.


2021 ◽  
Author(s):  
Azita Asadi ◽  
Farjam Goudarzi ◽  
Mustafa Ghanadian ◽  
Adel Mohammadalipour

Abstract Background: The stimulating effects of apigenin on mesenchymal stem cells (MSCs) osteogenesis, as well as the anti-inflammatory effect of this flavonoid, have been identified. In this study, osteogenic differentiation was investigated under inflammatory conditions and treatment with apigenin. Methods and Results: Along with osteogenic differentiation of MSCs, they became inflamed with LPS/PA, and treated simultaneously with apigenin. The degree of differentiation was assessed by alizarin red staining and alkaline phosphatase (ALP) activity. Also, gene expression of NLRP3 and RUNX2 was performed along with protein expression of IL-1β. Significant increase in NLRP3 and IL-1β were observed in MSCs when exposed to LPS/PA (p<0.01). Also, the osteogenesis was significantly decreased (p<0.01). Apigenin treatment induced significantly higher gene expression of RUNX2, the activity of ALP, and cell staining (p<0.01) which were also associated with reduced inflammation in these cells. Conclusions: The effectiveness of apigenin on osteogenesis under inflammatory conditions was cautiously observed.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Taeui Hong ◽  
Moon Young Kim ◽  
Dat Da Ly ◽  
Su Jung Park ◽  
Young Woo Eom ◽  
...  

Abstract Although mitochondrial functions are essential for cell survival, their critical roles in stem cell fate, including proliferation, differentiation, and senescence, remain elusive. Ginsenoside Rg3 exhibits various biological activities and reportedly increases mitochondrial biogenesis and respiration. Herein, we observed that Rg3 increased proliferation and suppressed senescence of human bone marrow-derived mesenchymal stem cells. Osteogenic, but not adipogenic, differentiation was facilitated by Rg3 treatment. Rg3 suppressed reactive oxygen species production and upregulated mitochondrial biogenesis and antioxidant enzymes, including superoxide dismutase. Consistently, Rg3 strongly augmented basal and ATP synthesis-linked respiration with high spare respiratory capacity. Rg3 treatment elevated cytosolic Ca2+ concentration contributing to mitochondrial activation. Reduction of intracellular or extracellular Ca2+ levels strongly inhibited Rg3-induced activation of mitochondrial respiration and biogenesis. Taken together, Rg3 enhances capabilities of mitochondrial and antioxidant functions mainly through a Ca2+-dependent pathway, which improves the proliferation and differentiation potentials and prevents the senescence of human mesenchymal stem cells.


Sign in / Sign up

Export Citation Format

Share Document