miR-653 Induces Bone Marrow Mesenchymal Stem Cells Proliferation via Activating Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma

2022 ◽  
Vol 12 (2) ◽  
pp. 381-385
Author(s):  
Cui Qin ◽  
Yibo Xiang ◽  
Sheng Li ◽  
Shu Huang ◽  
Wenjun Chen ◽  
...  

This study intends to assess miR-653’s expression in MSCs and OSCC and discuss molecular biological mechanism of changes of EMT in MSCs through activating miR-653 in OSCC. miR-653 expression in MSCs and OSCC was detected. si-miR-653 was transfected into MSCs followed by analysis of cell proliferation by CCK-8 and clone formation assay, cell apoptosis and cycle by FCM, and the changes of transcription factor as ZEB1 and Snail by qRT-PCR. miR-653 expression in OSCC cell was up-regulated significantly from the result of q-RT-PCR detection. The proliferation of MSCs induced by miR-653 was restrained and apoptotic rate was increased after treatment with si-miR-653 along with stagnated cycle of G1/G0 staging cell. The expression of transcription factor of EMT type as ZEB1 and Snail was elevated significantly after intervention using si-miR-653. In conclusion, the proliferation of OSCC could be induced by MSCs through activation with miR-653 which might be through regulation of EMT process.

2021 ◽  
Vol 8 ◽  
Author(s):  
Cuidi Xu ◽  
Hongli Shi ◽  
Xin Jiang ◽  
Yongqian Fan ◽  
Donghui Huang ◽  
...  

Zinc finger E-box-binding homebox 1 (ZEB1) is a zinc-finger transcription factor best known for its role in promoting the epithelial-mesenchymal transition, which is also related to osteogenesis. Here, ZEB1 was investigated for its role in the commitment of bone marrow mesenchymal stem cells (BMSCs) to osteoblasts. In vitro, ZEB1 expression decreased following osteogenic differentiation. Furthermore, silencing of ZEB1 in BMSCs promoted osteogenic activity and mineralization. The increase in osteogenic differentiation induced by si-ZEB1 could be partly rescued by the inhibition of Wnt/β-catenin (si-β-catenin). In vivo, knockdown of ZEB1 in BMSCs inhibited the rapid bone loss of ovariectomized (OVX) mice. ZEB1 expression has also been negatively associated with bone mass and bone formation in postmenopausal women. In conclusion, ZEB1 is an essential transcription factor in BMSC differentiation and may serve as a potential anabolic strategy for treating and preventing postmenopausal osteoporosis (PMOP).


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1658 ◽  
Author(s):  
Shin Pai ◽  
Oluwaseun Adebayo Bamodu ◽  
Yen-Kuang Lin ◽  
Chun-Shu Lin ◽  
Pei-Yi Chu ◽  
...  

Background: Oral squamous cell carcinoma (OSCC), with high mortality rates, is one of the most diagnosed head and neck cancers. Epithelial-to-mesenchymal transition (EMT) and the generation of cancer stem cells (CSCs) are two keys for therapy-resistance, relapse, and distant metastasis. Accumulating evidence indicates that aberrantly expressed cluster of differentiation (CD)47 is associated with cell-death evasion and metastasis; however, the role of CD47 in the generation of CSCs in OSCC is not clear. Methods: We investigated the functional roles of CD47 in OSCC cell lines SAS, TW2.6, HSC-3, and FaDu using the bioinformatics approach, immunoblotting, immunofluorescence staining, and assays for cellular migration, invasion, colony, and orosphere formation, as well as radiosensitivity. Results: We demonstrated increased expression of CD47 in OSCC patients was associated with an estimated poorly survival disadvantage (p = 0.0391) and positively correlated with the expression of pluripotency factors. Silencing CD47 significantly suppressed cell viability and orosphere formation, accompanied by a downregulated expression of CD133, SRY-Box transcription factor 2 (SOX2), octamer-binding transcription factor 4 (OCT4), and c-Myc. In addition, CD47-silenced OSCC cells showed reduced EMT, migration, and clonogenicity reflected by increased E-cadherin and decreased vimentin, Slug, Snail, and N-cadherin expression. Conclusion: Of therapeutic relevance, CD47 knockdown enhanced the anti-OSCC effect of radiotherapy. Collectively, we showed an increased CD47 expression promoted the generation of CSCs and malignant OSCC phenotypes. Silencing CD47, in combination with radiation, could provide an alternative and improved therapeutic efficacy for OSCC patients.


2020 ◽  
Vol 98 (2) ◽  
pp. 267-276 ◽  
Author(s):  
Lei Zou ◽  
Feng-Rong Chen ◽  
Ren-Pin Xia ◽  
Hua-Wei Wang ◽  
Zhen-Rong Xie ◽  
...  

Background: This study focuses on the lncRNA XIST (X inactive-specific transcript), an lncRNA involved in multiple human cancers, and investigates the functional significance of XIST and the molecular mechanisms underlying the epithelial–mesenchymal transition (EMT) in pancreatic cancer (PC). Methods: Clinical specimens from 25 patients as well as 5 human PC cell lines were analyzed for XIST, YAP, and microRNA(miR)-34a by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. To investigate how XIST influences cell proliferation, invasiveness, and apoptosis in PC, we performed the CCK-8 assays, Transwell assays, and flow cytometry. Luciferase reporter assays, qRT-PCR, and Western blot were applied to prove that miR-34a directly binds to XIST. Results: Up-regulation of XIST and Yes associated protein (YAP) and down-regulation of miR-34a were consistently observed in the clinical specimens and PC cell lines. Silencing XIST reduced the expression of YAP and suppressed transforming growth factor (TGF)-β1-induced EMT, while over-expression of XIST increased the expression of YAP and promoted EMT. In addition, inhibition of epidermal growth factor receptor (EGFR) hampered the XIST-promoted EMT. The results from the luciferase reporter assays confirmed that miR-34a directly targets XIST and suggested that XIST regulates cell proliferation, invasiveness, and apoptosis in PC by sponging miR-34a. Conclusions: XIST promotes TGF-β1-induced EMT by regulating the miR-34a–YAP–EGFR axis in PC.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3848-3848
Author(s):  
Marilena Ciciarello ◽  
Valentina Salvestrini ◽  
Davide Ferrari ◽  
Sara Gulinelli ◽  
Roberta Zini ◽  
...  

Abstract Abstract 3848 Introduction: Human bone marrow derived Mesenchymal Stem Cells (hMSCs) are adult multipotent cells. hMSCs differentiate in vitro and in vivo into several tissue lineages originating from the three germinal layers making them attractive candidates for bioengineering and cellular therapy. Thus, it seems of great relevance to search putative messengers and signalling able to modulate their proliferation and differentiation. Nucleotides triphosphates are extracellular messengers binding to specific receptors (P2Rs) that modulate cell functions depending on the cell type. Controversial information is available on P2 expression and activity in hMSCs. Methods and Results: Here we found that hMSCs expressed several P2R subtypes. hMSCs were very resistant to the cytotoxic effects of high concentrations of ATP, as demonstrated by the lack of morphological and mitochondrial changes or release of intracellular markers of cell death. Gene expression profiling revealed that ATP treatment down-regulated cell proliferation and up-regulated cell migration genes in hMSCs. Functional studies confirmed the inhibitory activity of ATP on proliferation and clonogenic ability of hMSCs. Furthermore, ATP potentiated the chemotactic response of hMSCs to the chemokine CXCL12, and increased their spontaneous migration. In vivo, xenotransplant experiments showed that the homing capacity of hMSCs to murine bone marrow was increased by ATP pre-treatment. Moreover, ATP increased pro-inflammatory cytokines production (IL-2, IFN-g, IL-12p70), while decreased secretion of the anti-inflammatory cytokine IL-10. This finding was associated with the reduced ability of ATP-treated hMSC of inhibiting T-cell proliferation. Microarrays data suggested that several genes implicated in hMSC differentiation can be modulated by ATP treatment. To further investigate this issue, hMSCs cells were cultured under adipogenic or osteogenic conditions and were transiently exposed to ATP before starting differentiation or continuously exposed to ATP for the first 3 days of differentiation induction. We demonstrated that adipogenesis-related accumulation of lipids, analyzed by Oil red O staining, was more evident in ATP treated cultures. Furthermore, quantitative real time PCR (qRT-PCR) assay showed that mRNA expression of PPARg, a transcription factor early up-regulated during adipogenesis, was significantly increased in hMSCs differentiated cells treated with ATP. In osteogenic condition, analysis of mineralized area through Alizarin Red staining, indicated that ATP treatment enhanced the extent of mineralization compared to untreated control. The expression of RUNX2, a key transcription factor in osteogenesis, analyzed by qRT-PCR in differentiated cells confirmed data obtained in Alizarin-based assay. Conclusions: These data demonstrated that purinergic signalling modulates biological functions and differentiation potential of hMSCs. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document