miR-129 Promotes the Proliferation of Alzheimer’s Neuronal Cells by Binding the 3′ Untranslated Regions (3′ UTR) of Amyloid Precursor Protein (APP)

2022 ◽  
Vol 12 (3) ◽  
pp. 551-557
Author(s):  
Zhen Liu ◽  
Canfang Hu ◽  
Dingzhong Tang ◽  
Guojun Luo

Alzheimer’s disease (AD) is a neurodegenerative disease with memory loss and cognitive impairment. Short non-coding RNAs (miRNAs) are potential biomarkers and therapeutic targets for AD. This study aims to investigate miR-129’s role in AD. miR-129 and amyloid precursor protein (APP) expression was measured by Q-PCR, and LC3, p62, ATG5, Bcl-2, p-Tau and Caspase3 protein was detected by Western blot. Hydrogenase kits and DCFH-DA detected cell apoptosis, cytotoxicity and ROS generation. The interaction between APP and miR-129 was assessed by luciferase report experiment. HE staining and TUNEL assay evaluated hippocampal neuron damage. In AD patient serum, AD transgenic (TG) mouse brain tissue, and AB1-42-treated SH-SY5Y cells, miR-129 was downregulated but autophagy was increased. Overexpression of miR-129 reduced cell damage induced by AB1-42, and miR-129 can directly regulate APP expression by binding APP 3′-UTR. miR-129 inhibitors reversed the protective effect of shAPP on AB1-42-induced cell damage. In addition, miR-129 overexpression reduced neuronal damage through inhibiting autophagy in vivo. APP expression in AD patient and AD cell model was significantly increased compared to controls. Aβ-42 treatment caused up-regulation of APP expression, while APP knockdown inhibited neurons through autophagy. In conclusion, miR-129 overexpression can regulate autophagy by targeting APP5, thereby reducing neuronal damage in AD. These findings provide a new perspective for treating AD.

2010 ◽  
Vol 5 (S 01) ◽  
Author(s):  
M Udelhoven ◽  
T Ehlkes ◽  
MM Hettich ◽  
S Asrat ◽  
W Krone ◽  
...  

2020 ◽  
Author(s):  
K. Zerrouki ◽  
N. Djebli ◽  
L. Gadouche ◽  
I. Erdogan Orhan ◽  
F. SezerSenol Deniz ◽  
...  

Nowadays, because of the industrialization, a lot of contaminant were available ; the consequences of this availability are apparition of diseases including neurodegeneration. Neurodegenerative diseases of the human brain comprise a variety of disorders that affect an increasing percentage of the population. This study is based on the effect of the Boswellic resin, which is from a medicinal plant and known for its antioxidant effects on nerve cell damage. The objective of this work was to evaluate the in vitro and in vivo effects of the Boswellic resin on anticholinesterase activity and Alzheimer’s disease (AD) induced by D-galactose and aluminum tetrachloride in Swiss mice. Chemical composition of the resin essential oil was identified by the CG-MS analysis. The antioxidant activity was also assessed by the DMPD and metal chelation methods. In order to understand the mechanism of memory improvement, the acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, inhibitory assays were performed. In vivo part of the study was achieved on Swiss mice divided into four groups: control, AD model, treated AD, and treated control group. The identification of chemical composition by CG-MS reach the 89.67% of the total extract compounds presented some very important molecules (p-Cymene, n-Octyl acetate, α-Pinene…). The present study proves that Boswellic resin improves memory and learning in treated Alzheimer’s group, modulates the oxidative stress and be involved in the protective effect against amyloid deposition and neurodegeneration, and stimulates the immune system in mice’s brain.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Deok-Sang Hwang ◽  
Hyo Geun Kim ◽  
Jun-Bock Jang ◽  
Myung Sook Oh

Dangguijakyak-san (DJS), a famous traditional Korean multiherbal medicine, has been used to treat gynecological and neuro-associated disease. Recent studies demonstrated that DJS has multiple bioactivities including neuroprotection. In the present study, we were to investigate the effect of DJS and its mechanism in anin vitroandin vivomodel of Parkinson’s disease (PD). In primary mesencephalic culture system, DJS attenuated the dopaminergic cell damage induced by 1-methyl-4-phenylpyridine toxicity, and it inhibited production of inflammatory factors such as tumor necrosis factorα(TNF-α), nitric oxide (NO), and activation of microglial cells. Then, we confirmed the effect of DJS in a mouse PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In the pole test, DJS at 50 mg/kg/day for 5 days showed increase of motor activity showing shortened time to turn and locomotor activity compared with the MPTP only treated mice. In addition, DJS significantly protected nigrostriatal dopaminergic neuron from MPTP stress. Moreover, DJS showed inhibition of gliosis in the substantia nigra pars compacta. These results have therapeutic implications for DJS in the treatment of PD via anti-inflammatory effects.


2006 ◽  
Vol 23 (9) ◽  
pp. 772-775 ◽  
Author(s):  
J. Kálmán ◽  
M. Palotás ◽  
M. Pákáski ◽  
M. Hugyecz ◽  
Z. Janka ◽  
...  

2019 ◽  
Author(s):  
Tatiana Burrinha ◽  
Ricardo Gomes ◽  
Ana Paula Terrasso ◽  
Cláudia Guimas Almeida

AbstractAging increases the risk of Alzheimer’s disease (AD). During normal aging synapses decline and β-Amyloid (Aβ) accumulates. An Aβ defective clearance with aging is postulated as responsible for Aβ accumulation, although a role for increased Aβ production with aging can also lead to Aβ accumulation. To test this hypothesis, we established a long-term culture of primary mouse neurons that mimics neuronal aging (lysosomal lipofuscin accumulation and synapse decline). Intracellular endogenous Aβ42 accumulated in aged neurites due to increased amyloid-precursor protein (APP) processing. We show that APP processing is up-regulated by a specific age-dependent increase in APP endocytosis. Endocytosed APP accumulated in early endosomes that, in turn were found augmented in aged neurites. APP processing and early endosomes up-regulation was recapitulated in vivo. Finally, we found that inhibition of Aβ production reduced the decline in synapses in aged neurons. We propose that potentiation of APP endocytosis by neuronal aging increases Aβ production, which contributes to aging-dependent decline in synapses.SummaryHow aging increases the risk of Alzheimer’s disease is not clear. We show that normal neuronal aging increases the intracellular production of β-amyloid, due to an upregulation of the amyloid precursor protein endocytosis. Importantly, increased Aβ production contributes to the aging-dependent synapse loss.


2009 ◽  
Vol 111 (4) ◽  
pp. 741-752 ◽  
Author(s):  
Yu Zhen ◽  
Yuanlin Dong ◽  
Xu Wu ◽  
Zhipeng Xu ◽  
Yan Lu ◽  
...  

Background Some anesthetics have been suggested to induce neurotoxicity, including promotion of Alzheimer's disease neuropathogenesis. Nitrous oxide and isoflurane are common anesthetics. The authors set out to assess the effects of nitrous oxide and/or isoflurane on apoptosis and beta-amyloid (Abeta) levels in H4 human neuroglioma cells and primary neurons from naïve mice. Methods The cells or neurons were exposed to 70% nitrous oxide and/or 1% isoflurane for 6 h. The cells or neurons and conditioned media were harvested at the end of the treatment. Caspase-3 activation, apoptosis, processing of amyloid precursor protein, and Abeta levels were determined. Results Treatment with a combination of 70% nitrous oxide and 1% isoflurane for 6 h induced caspase-3 activation and apoptosis in H4 naïve cells and primary neurons from naïve mice. The 70% nitrous oxide plus 1% isoflurane, but neither alone, for 6 h induced caspase-3 activation and apoptosis, and increased levels of beta-site amyloid precursor protein-cleaving enzyme and Abeta in H4-amyloid precursor protein cells. In addition, the nitrous oxide plus isoflurane-induced Abeta generation was reduced by a broad caspase inhibitor, Z-VAD. Finally, the nitrous oxide plus isoflurane-induced caspase-3 activation was attenuated by gamma-secretase inhibitor L-685,458, but potentiated by exogenously added Abeta. Conclusion These results suggest that the common anesthetics nitrous oxide plus isoflurane may promote neurotoxicity by inducing apoptosis and increasing Abeta levels. The generated Abeta may further potentiate apoptosis to form another round of apoptosis and Abeta generation. More studies, especially the in vivo confirmation of these in vitro findings, are needed.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1275
Author(s):  
Soo Yong Park ◽  
Joo Yeong Kang ◽  
Taehee Lee ◽  
Donggyu Nam ◽  
Chang-Jin Jeon ◽  
...  

Alzheimer’s disease (AD) is a complex, age-related neurodegenerative disease that is the most common form of dementia. However, the cure for AD has not yet been founded. The accumulation of amyloid beta (Aβ) is considered to be a hallmark of AD. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), also known as beta secretase is the initiating enzyme in the amyloidogenic pathway. Blocking BACE1 could reduce the amount of Aβ, but this would also prohibit the other functions of BACE1 in brain physiological activity. SPONDIN1 (SPON1) is known to bind to the BACE1 binding site of the amyloid precursor protein (APP) and blocks the initiating amyloidogenesis. Here, we show the effect of SPON1 in Aβ reduction in vitro in neural cells and in an in vivo AD mouse model. We engineered mouse induced neural stem cells (iNSCs) to express Spon1. iNSCs harboring mouse Spon1 secreted SPON1 protein and reduced the quantity of Aβ when co-cultured with Aβ-secreting Neuro 2a cells. The human SPON1 gene itself also reduced Aβ in HEK 293T cells expressing the human APP transgene with AD-linked mutations through lentiviral-mediated delivery. We also demonstrated that injecting SPON1 reduced the amount of Aβ and ameliorated cognitive dysfunction and memory impairment in 5xFAD mice expressing human APP and PSEN1 transgenes with five AD-linked mutations.


Sign in / Sign up

Export Citation Format

Share Document