Cluster Based Data Aggregation Scheme in Wireless Sensor Network

2020 ◽  
Vol 17 (6) ◽  
pp. 2678-2683
Author(s):  
Rani Poonam ◽  
Sharma Avinash

Wireless Sensor Network (WSN) consists of a network with huge quantity of sensors that are deployed to accomplish a particular task. These low cost sensors are proficient of aggregating and communicating the sensed information over the field. Evaluation of IoT and proliferation of sensors with other application results building a variety of gazettes. However, these nodes being powered by a battery are energy constrained. While operating, most of the vitality is spent during packet transmission. So an ardent care should be taken care of while developing the protocol. The protocols through which nodes communicate with each other is known as routing. Designing of appropriate routing protocol results in better lifetime of the protocol. This paper proposes a routing protocol based on cluster formation among same type of sensor nodes (SN) for gathering of data at intermediate nodes in the cluster and these intermediate nodes further transmits data to resource opulence sink.

Wireless Sensor Network (WSN) is a huge collection of sensor nodes deployed without any predetermined infrastructure. They are powered by batteries and energy consumption is one of the major issues in WSN. Hence to prolong the lifetime of the networks, it is important to design the energy efficient optimized routing algorithm. In this paper, two hop forwarding scheme in AODV and Fuzzy Logic is proposed to find an optimal routing protocol and intermediate node acknowledgement is deducted by the use of Fuzzy rules. The parameters such as remaining energy, data packet transmission, packet received acknowledgement and number of rounds is given as input to the fuzzy system which gives an optimized routing decision. The efficacy of the proposed algorithm is evaluated using NS2 and compared with Fuzzy-based Energy-Aware Routing Mechanism (FEARM). The simulation results shows that the Fuzzy based AODV routing algorithm reduces the energy consumption, minimizes the routing response packets and improves the network life time compared to other similar routing protocols.


2015 ◽  
Vol 4 (1) ◽  
Author(s):  
Syopiansyah Jaya Putra, Siti Ummi Masruroh

The main goal of this research is concerning clustering protocols to minimize the energy consumption of each node, and reduce number of transmission in wireless sensor network. However, most existing clustering protocols consume large amounts of energy, incurred by cluster formation overhead and fixed-level clustering, particularly when sensor nodes are densely deployed in wireless sensor networks. In this paper, we propose TPR (Teen-Pegasis Routing)  protocol, which is a  low energy adaptive clustering hierarchy and  threshold sensitive  energy  efficient sensor  network protocol.  This proposed algorithm combine both proactive and reactive routing protocol. Keywords: Wireless sensor networks (WSN), LEACH, PEGASIS, TEEN


Author(s):  
Ms Mamta

Wireless Sensor Network (WSN) has delivered the accessibility of small, tiny and low cost sensor nodes which are capable to sense various kinds of physical and environmental conditions, data processing, wireless communication and data gathering. In wireless sensor network routing protocols can be divided into two categories first is flat routing protocol and another is hierarchical routing protocol. In this paper flat and hierarchical routing protocols are evaluated and compared based on various performance parameters. In the last decade we have seen expanded enthusiasm for the potential utilization of remote wireless sensor systems (WSNs) in an extensive change of uses and it has turned into a unique research zone. So finally, in this research paper we are focusing on two different classes of routing protocols in WSN: flat routing and hierarchical or clustering routing.


2018 ◽  
Vol 14 (8) ◽  
pp. 155014771879584 ◽  
Author(s):  
Danyang Qin ◽  
Yan Zhang ◽  
Jingya Ma ◽  
Ping Ji ◽  
Pan Feng

Due to the advantages of large-scale, data-centric and wide application, wireless sensor networks have been widely used in nowadays society. From the physical layer to the application layer, the multiply increasing information makes the data aggregation technology particularly important for wireless sensor network. Data aggregation technology can extract useful information from the network and reduce the network load, but will increase the network delay. The non-exchangeable feature of the battery of sensor nodes makes the researches on the battery power saving and lifetime extension be carried out extensively. Aiming at the delay problem caused by sleeping mechanism used for energy saving, a Distributed Collision-Free Data Aggregation Scheme is proposed in this article to make the network aggregate data without conflicts during the working states periodically changing so as to save the limited energy and reduce the network delay at the same time. Simulation results verify the better aggregating performance of Distributed Collision-Free Data Aggregation Scheme than other traditional data aggregation mechanisms.


The emergence of sensor networks as one of the dominant technology trends in the coming decades has posed numerous unique challenges on their security to researchers. These networks are likely to be composed of thousands of tiny sensor nodes, which are low-cost devices equipped with limited memory, processing, radio, and in many cases, without access to renewable energy resources. While the set of challenges in sensor networks are diverse, we focus on security of Wireless Sensor Network in this paper. First, we propose some of the security goal for Wireless Sensor Network. To perform any task in WSN, the goal is to ensure the best possible utilization of sensor resources so that the network could be kept functional as long as possible. In contrast to this crucial objective of sensor network management, a Denial of Service (DoS) attack targets to degrade the efficient use of network resources and disrupts the essential services in the network. DoS attack could be considered as one of th


Author(s):  
Saloni Dhiman ◽  
Deepti Kakkar ◽  
Gurjot Kaur

Wireless sensor networks (WSNs) consist of several sensor nodes (SNs) that are powered by battery, so their lifetime is limited, which ultimately affects the lifespan and hence performance of the overall networks. Till now many techniques have been developed to solve this problem of WSN. Clustering is among the effective technique used for increasing the network lifespan. In this chapter, analysis of multi-hop routing protocol based on grid clustering with different selection criteria is presented. For analysis, the network is divided into equal-sized grids where each grid corresponds to a cluster and is assigned with a grid head (GH) responsible for collecting data from each SN belonging to respective grid and transferring it to the base station (BS) using multi-hop routing. The performance of the network has been analyzed for different position of BS, different number of grids, and different number of SNs.


Author(s):  
Priyanka Ranaware ◽  
N.D. Dhoot

<p class="Default">This paper proposes a novel industrial wireless sensor network for industrial machine condition monitoring. To avoid unexpected equipment failures and obtain higher accuracy in diagnostic and prognostic for the health condition of a motor, efficient and comprehensive data collecting, monitoring, and control play an important role to improve the system more reliable and effective. A novel wireless data collection for health monitoring system of electric machine based on wireless sensor network is proposed and developed in this paper. The unique characteristics of ZigBee networks such as low power, low cost, and high flexibility make them ideal for this application. The proposed system consists of wireless sensor nodes which are organized into a monitoring network by ZigBee protocols. A base station and wireless nodes have been developed to form a prototype system. Various sensors have the capability to monitor physiological as well as environmental conditions. Therefore proposed system provides a flexible solution that makes our living spaces more intelligent.</p>


Author(s):  
Tanya Pathak ◽  
Vinay Kumar Singh ◽  
Anurag Sharma

In the recent years, an efficient design of a Wireless Sensor Network has become important in the area of research. The major challenges in the design of Wireless Sensor Network is to improve the network lifetime. The main difficulty for sensor node is to survive in that monitoring area for the longer time that means there is a need to increase the lifetime of the sensor nodes by optimizing the energy and distance. There are various existing routing protocols in which optimal routing can be achieved like Data-Centric, Hierarchical and Location-based routing protocols. In this paper, new power efficient routing protocol is being proposed that not only select the shortest path between the source node and sink node for data transmission but also maximizes the lifetime of the participating nodes by selecting the best path for sending the data packet across the network. The main objective of this research is to develop a faster algorithm to find the energy efficient route for Wireless Sensor Network. Simulation results shows that this strategy achieves long network lifetime when compared to the other standard protocols.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 93 ◽  
Author(s):  
Santosh Anand ◽  
Akarsha RR

Energy utilization is an important aspect in any Wireless Sensor Network .The data transmission from various components connected over real-time networks consumes more energy in Wireless Sensor Network. Mainly the task of any network engineer lies in performing an energy efficient, so to reserve the nonrenewable energy supply to sensor nodes. The research convey out effective utilization of energy in wireless sensor networks. It is important to comprise long-term and low-cost monitoring in different WSN application. The network algorithms separated mainly in two parts, first to generate multiple paths and second to switch paths from generated list of paths .Which is implemented as multi-hop-communication so that the battery life of the sensor node may live for long term and low cost of monitoring, which achieve the high lifetime of WSN. 


2019 ◽  
Vol 16 (9) ◽  
pp. 4034-4043
Author(s):  
Rani Poonam ◽  
Sharma Avinash

Wireless Sensor Network (WSN) is an emerging area in past few decades. Through the integration of low cost sensor nodes with Internet of Things (IoT), lots of applications are common now these days. Each application senses and transmits the fused data to the sink. This wireless data transmission is called routing and is the main governing factor for the span of the sensor network. This paper analyzes and presents different variety of routing techniques based on connectivity structure of the sensors. The type of application for which sensor nodes are used governs selection of a routing technique.


Sign in / Sign up

Export Citation Format

Share Document