Formation of Copper Nanowires by Electroless Deposition Using Microtubules as Templates

2008 ◽  
Vol 8 (7) ◽  
pp. 3416-3421
Author(s):  
K. Valenzuela ◽  
S. Raghavan ◽  
P. A. Deymier ◽  
J. Hoying

Microtubules (MTs) are self-assembling, protein-based, tubular structures several micrometers long with outer and inner diameters of 25 nm and 15 nm, respectively. This aspect ratio makes MTs ideal templates for producing nanowires for applications such as electrical nano-interconnects. MTs are poorly conductive and their use as interconnects necessitates their metallization. We report a process for metallization of MTs with copper using a biologically benign electroless deposition chemistry consisting of copper sulfate solution containing acetic acid as a complexant and ascorbic acid as reducing agent. The pH of the plating bath is controlled such that copper metallization occurs without disassembling the MTs. Electron microscopic characterization of the morphology and dimensions of the copper nanowires shows that metallization for approximately 1 minute produces a uniform nanowire with an average diameter of approximately 15 nm, suggesting that metallization is initiated selectively from the MT inner core.

2014 ◽  
Vol 941-944 ◽  
pp. 1659-1663 ◽  
Author(s):  
Yan Mei Zhang ◽  
Yong Hu ◽  
Guo Qing Wang ◽  
Ye Gui ◽  
Da Fu Wang ◽  
...  

Antibacterial layer was prepared on the aluminum surface by anodizing pure Al and electrodepositing Cu in the pores of the anodic aluminum oxide (AAO) membrane. The AAO membrane was generated by a two-step anodization process in oxalic acid solution. The electrodeposition of Cu was conducted in copper sulfate solution using alternating current. The structural characterizations by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and energy-dispersive spectrometer (EDS) show that Cu nanowires with an average diameter of 70 nm are assembled in the pores of the AAO membrane. The tests of antimicrobial properties against two typical bacteria of Escherichia coli (E. Coli) and Staphylococcus aureus (S. Aureus) indicate that surface antibacterial layer of aluminum possesses excellent antimicrobial properties and the maximum value of the antibacterial rate can reach 99.9% both for E. coli and S. aureus.


Author(s):  
E, R. Walker ◽  
N. O. Olson ◽  
M. H. Friedman

An unidentified virus, responsible for an arthritic-like condition in chickens was studied by electron microscopy and other methods of viral investigation. It was characterized in chorio-allantoic membrane (CAM) lesions of embryonating chicken eggs and in tissue culture as to: 1) particle size; 2) structure; 3) mode of replication in the cell; and 4) nucleic acid type.The inoculated virus, coated and uncoated, is first seen in lysosomal-like inclusions near the nucleus; the virions appear to be uncoated in these electron dense inclusions (Figure 1), Although transfer of the viral genome from these inclusions is not observable, replicating virus and mature virus crystals are seen in the cytoplasm subsequent to the uncoating of the virions.The crystals are formed in association with a mass of fibrils 50 to 80 angstroms in diameter and a ribosome-studded structure that appears to be granular endoplasmic reticulum adapted to virus replication (Figure 2). The mature virion (Figure 3) is an icosahedral particle approximately 75 millimicrons in diameter. The inner core is 45 millimicrons, the outer coat 15 millimicrons, and the virion has no envelope.


2021 ◽  
Vol 108 ◽  
pp. 103194
Author(s):  
Francisco R.A. Ziegler-Rivera ◽  
Blanca Prado ◽  
Alfonso Gastelum-strozzi ◽  
Jorge Márquez ◽  
Lucy Mora ◽  
...  

1984 ◽  
Vol 30 (5) ◽  
pp. 691-698 ◽  
Author(s):  
Anna S. Tikhonenko ◽  
Nina N. Belyaeva ◽  
Anna F. Kretova

The relationship between large and small particles of phages No. 1M and H17 reproducing simultaneously in one and the same bacterial cell of Bacillus mycoides was studied by the immune electron microscopic technique. The large particles of phages No. 1M and H17 were morphologically identical with phage No. 1 of B. mycoides, whereas only the tails of small particles of phages No. 1M and H17 were morphologically identical with the tail of phage No. 1. Antigens were identified in phages No. 1, No. 1M, and H17 using specific antibodies against phage No. 1, containing only large phage particles, and specific antibodies against phage H17 small heads. It was shown that (i) all structural elements of large particles and tails of small particles of phage No. 1M were antigenically identical with those of phage No. 1; (ii) all structural elements of small and large particles of phage H17, except the inner core of the tail, were antigenically different from phage No. 1; and (iii) the small heads of phages No. 1M and H17 were antigenically identical. Particles of phage No. 1 are morphologically and antigenically identical with the large particles of phage No. 1M and are antigenically different from the large particles of phage H17. Since the tails of small and large particles are antigenically identical in each phage pair (No. 1M and H17), this suggests that in both cases, the genome of a small defective phage codes for the synthesis of head proteins only, whereas its tail is borrowed from the corresponding helper phage. The small phage may therefore be considered as a satellite of the large phage which depends on a helper partner for production of complete particles and whose tail proteins are identical with those of the helper phage.


2019 ◽  
Vol 73 (11) ◽  
pp. 945-946
Author(s):  
Rachel Fischer ◽  
Marco Oetken

For aluminum, a new visualization method is presented in which copper is deposited electrochemically. The fingerprint on the aluminum (trace carrier) serves as an insulator as it prevents direct contact between electrolyte and aluminum. The decisive factor is the choice of an ammoniacal copper sulfate solution, which acts as a corrosion inhibitor due to the ammonia molecules. This enables uniform copper deposition on aluminum and thus the development of a clearly defined negative image.


2001 ◽  
Vol 674 ◽  
Author(s):  
Min Chen ◽  
David E. Nikles

ABSTRACTFe48Pt52 nanoparticles were synthesized by the simultaneous chemical reduction of platinum acetylacetonate and thermal decomposition of iron pentacarbonyl. As-prepared the particles were spherical with an average diameter of 3 nm and a polydispersity of less than 5%. The particles were superparamagnetic and had a fcc structure. Highly ordered self-assembled supercrystals of particles were formed in TEM grids by deposition from dispersions in hydrocarbon solvents. Nanoparticles deposited on amorphous carbon-coated and SiO2-coated Cu grids tend to assemble into small domains of hexagonal arrays. Larger domains of hexagonal arrays formed on Si3N4 membrane TEM grids. For thin multilayers, the FePt nanoparticles tends to assemble into hexagonal close-packed lattices (ABABAB stacking). For the thicker multilayers, ABCABC stacking was observed. Small angle X-ray reflectivity of the particles on a Si (100) substrate show highly ordered multiplanar structure with d-spacing of 6.2 nm. The coercivity of self-assembled FePt films strongly depended on the annealing temperature. After annealing at 700°C for 30 minutes, the particles transformed from FCC to “FCT” phase and the coercivity of film increased up to 11570 Oe. However, the particle size increased to 16 nm due to sintering.


2007 ◽  
Vol 353-358 ◽  
pp. 2025-2028 ◽  
Author(s):  
Ikuo Shohji ◽  
Susumu Arai ◽  
Naoki Kano ◽  
Noboru Otomo ◽  
Masahisa Uenishi

A Cu brazing sheet has been developed using a Cu-P composite plating method. A Cu-P composite plating layer, which contains 7mass%P, was formed on a Cu plate with a copper sulfate solution including P particles. The melting start temperature of the Cu-P composite layer was determined to be approximately 765°C. Microstructure and joint strength of a brazed joint with the Cu-P composite layer were investigated and compared with those of the joint with a conventional Cu-7P filler foil. As the results of the study, it was clarified that the Cu-P composite layer developed is feasible to use as a brazing material for Cu and Cu alloys.


2004 ◽  
Vol 836 ◽  
Author(s):  
Susan Huang ◽  
Harry Efstathiadis ◽  
Pradeep Haldar ◽  
Hee-Gyoun Lee

ABSTRACTWe report on a novel use of nanorod arrays for organic based solar cell devices. A metal foil with copper nanorods attached to the surface was developed by electrodepositing copper from a copper sulfate solution into an anodic alumina oxide (AAO) template that had been coated with a metal on one side. The AAO membrane was dissolved in NaOH leaving behind an aligned array of copper nanorods. This nanorod array was evaluated to explore the possibility of increasing the power conversion efficiency of organic solar cells. Nanorod array characteristics were investigated by focus ion beam, scanning electron microscopy, and x-ray diffraction spectroscopy. A solar cell device was made by applying a polymer layer of poly(2-methoxy-5-(3', 7'-dimethyloctyloxy)-1, 4-phenylene-vinylene) (MDMO-PPV) mixed with 6, 6 phentl-C61-butyl acid-methylester (PCBM) onto the copper nanorod array and sandwiching it with a film of poly(3, 4-ethylenedioxythiophene): poly(styrene-sulfonate) (PEDOT:PSS) applied onto a indium tin oxide coated glass substrate.


Sign in / Sign up

Export Citation Format

Share Document