An Electron Microscopic Study of an Avian Reovirus that Causes Arthritis

Author(s):  
E, R. Walker ◽  
N. O. Olson ◽  
M. H. Friedman

An unidentified virus, responsible for an arthritic-like condition in chickens was studied by electron microscopy and other methods of viral investigation. It was characterized in chorio-allantoic membrane (CAM) lesions of embryonating chicken eggs and in tissue culture as to: 1) particle size; 2) structure; 3) mode of replication in the cell; and 4) nucleic acid type.The inoculated virus, coated and uncoated, is first seen in lysosomal-like inclusions near the nucleus; the virions appear to be uncoated in these electron dense inclusions (Figure 1), Although transfer of the viral genome from these inclusions is not observable, replicating virus and mature virus crystals are seen in the cytoplasm subsequent to the uncoating of the virions.The crystals are formed in association with a mass of fibrils 50 to 80 angstroms in diameter and a ribosome-studded structure that appears to be granular endoplasmic reticulum adapted to virus replication (Figure 2). The mature virion (Figure 3) is an icosahedral particle approximately 75 millimicrons in diameter. The inner core is 45 millimicrons, the outer coat 15 millimicrons, and the virion has no envelope.

Author(s):  
Jerry D. Reeves ◽  
Heather D. Mayor

Picornaviruses, a group of small RNA-containing viruses are further divided into two sub-groups, the enteroviruses which are acid stable, and the rhinoviruses which suffer marked loss of infectivity at acid pH. We have found a ninety per cent decrease in infectious titer after subjection to pH 5.5 as compared to the titer of the original material at pH 7. 0. Considerable morphological degradation of the virion, as monitored by electron microscopy, has also occurred by pH 5. 5. It appears that capsid breakdown proceeds through loss of a vertex capsomere group followed by release of the viral genome in the form of a ribonucleoprotein strand (Fig. 1). However, the conventional flattened electron microscopic image produced by these small virus particles makes further interpretation at a high resolution extremely difficult.


Author(s):  
J. Frank ◽  
P.-Y. Sizaret ◽  
A. Verschoor ◽  
J. Lamy

The accuracy with which the attachment site of immunolabels bound to macromolecules may be localized in electron microscopic images can be considerably improved by using single particle averaging. The example studied in this work showed that the accuracy may be better than the resolution limit imposed by negative staining (∽2nm).The structure used for this demonstration was a halfmolecule of Limulus polyphemus (LP) hemocyanin, consisting of 24 subunits grouped into four hexamers. The top view of this structure was previously studied by image averaging and correspondence analysis. It was found to vary according to the flip or flop position of the molecule, and to the stain imbalance between diagonally opposed hexamers (“rocking effect”). These findings have recently been incorporated into a model of the full 8 × 6 molecule.LP hemocyanin contains eight different polypeptides, and antibodies specific for one, LP II, were used. Uranyl acetate was used as stain. A total of 58 molecule images (29 unlabelled, 29 labelled with antl-LPII Fab) showing the top view were digitized in the microdensitometer with a sampling distance of 50μ corresponding to 6.25nm.


Author(s):  
Joseph E. Mazurkiewicz

Immunocytochemistry is a powerful investigative approach in which one of the most exacting examples of specificity, that of the reaction of an antibody with its antigen, isused to localize tissue and cell specific molecules in situ. Following the introduction of fluorescent labeled antibodies in T950, a large number of molecules of biological interest had been studied with light microscopy, especially antigens involved in the pathogenesis of some diseases. However, with advances in electron microscopy, newer methods were needed which could reveal these reactions at the ultrastructural level. An electron dense label that could be coupled to an antibody without the loss of immunologic activity was desired.


Author(s):  
Loren Anderson ◽  
Pat Pizzo ◽  
Glen Haydon

Transmission electron microscopy of replicas has long been used to study the fracture surfaces of components which fail in service. Recently, the scanning electron microscope (SEM) has gained popularity because it allows direct examination of the fracture surface. However, the somewhat lower resolution of the SEM coupled with a restriction on the sample size has served to limit the use of this instrument in investigating in-service failures. It is the intent of this paper to show that scanning electron microscopic examination of conventional negative replicas can be a convenient and reliable technique for determining mode of failure.


Author(s):  
Li Li-Sheng ◽  
L.F. Allard ◽  
W.C. Bigelow

The aromatic polyamides form a class of fibers having mechanical properties which are much better than those of aliphatic polyamides. Currently, the accepted morphology of these fibers as proposed by M.G. Dobb, et al. is a radial arrangement of pleated sheets, with the plane of the pleats parallel to the axis of the fiber. We have recently obtained evidence which supports a different morphology of this type of fiber, using ultramicrotomy and ion-thinning techniques to prepare specimens for transmission and scanning electron microscopy.


Author(s):  
G. C. Smith ◽  
R. L. Heberling ◽  
S. S. Kalter

A number of viral agents are recognized as and suspected of causing the clinical condition “gastroenteritis.” In our attempts to establish an animal model for studies of this entity, we have been examining the nonhuman primate to ascertain what viruses may be found in the intestinal tract of “normal” animals as well as animals with diarrhea. Several virus types including coronavirus, adenovirus, herpesvirus, and picornavirus (Table I) were detected in our colony; however, rotavirus, astrovirus, and calicivirus have not yet been observed. Fecal specimens were prepared for electron microscopy by procedures reported previously.


Author(s):  
Peter M. Andrews

Although there have been a number of recent scanning electron microscopic reports on the renal glomerulus, the advantages of scanning electron microscopy have not yet been applied to a systematic study of the uriniferous tubules. In the present investigation, scanning electron microscopy was used to study the ultrastructural morphology of the proximal, distal, thin loop, and collecting tubules. Material for observation was taken from rat kidneys which were fixed by vascular perfusion, sectioned by either cutting or fracturing technigues, and critically point dried.The brush border characterising proximal tubules is first detected on the luminal surface of Bowman's capsule adjacent to the urinary pole orifice. In this region one frequently finds irregular microvilli characterized by broad and flattened bases with occasional bulbous structures protruding from their surfaces.


Author(s):  
C. N. Gordon

Gordon and Kleinschmidt have described a new preparative technique for visualizing DNA by electron microscopy. This procedure, which is a modification of Hall's “mica substrate technique”, consists of the following steps: (a) K+ ions on the cleavage surface of native mica are exchanged for Al3+ ions by ion exchange. (b) The mica, with Al3+ in the exchange sites on the surface, is placed in a dilute aqueous salt solution of DNA for several minutes; during this period DNA becomes adsorbed on the surface. (c) The mica with adsorbed DNA is removed from the DNA solution, rinsed, dried and visualized for transmission electron microscopy by Hall's platinum pre-shadow replica technique.In previous studies of circular DNA by this technique, most of the molecules seen were either broken to linears or extensively tangled; in general, it was not possible to obtain suitably large samples of open extended molecules for contour length measurements.


Author(s):  
R. Stephens ◽  
G. Schidlovsky ◽  
S. Kuzmic ◽  
P. Gaudreau

The usual method of scraping or trypsinization to detach tissue culture cell sheets from their glass substrate for further pelletization and processing for electron microscopy introduces objectionable morphological alterations. It is also impossible under these conditions to study a particular area or individual cell which have been preselected by light microscopy in the living state.Several schemes which obviate centrifugation and allow the embedding of nondetached tissue culture cells have been proposed. However, they all preserve only a small part of the cell sheet and make use of inverted gelatin capsules which are in this case difficult to handle.We have evolved and used over a period of several years a technique which allows the embedding of a complete cell sheet growing at the inner surface of a tissue culture roller tube. Observation of the same cell by light microscopy in the living and embedded states followed by electron microscopy is performed conveniently.


Author(s):  
J. A. Pollock ◽  
M. Martone ◽  
T. Deerinck ◽  
M. H. Ellisman

Localization of specific proteins in cells by both light and electron microscopy has been facilitate by the availability of antibodies that recognize unique features of these proteins. High resolution localization studies conducted over the last 25 years have allowed biologists to study the synthesis, translocation and ultimate functional sites for many important classes of proteins. Recently, recombinant DNA techniques in molecular biology have allowed the production of specific probes for localization of nucleic acids by “in situ” hybridization. The availability of these probes potentially opens a new set of questions to experimental investigation regarding the subcellular distribution of specific DNA's and RNA's. Nucleic acids have a much lower “copy number” per cell than a typical protein, ranging from one copy to perhaps several thousand. Therefore, sensitive, high resolution techniques are required. There are several reasons why Intermediate Voltage Electron Microscopy (IVEM) and High Voltage Electron Microscopy (HVEM) are most useful for localization of nucleic acids in situ.


Sign in / Sign up

Export Citation Format

Share Document