Microstructural and Electrochemical Properties of LiCoO2 Thin Films Prepared by Metal-Induced Crystallization

2015 ◽  
Vol 15 (10) ◽  
pp. 8187-8190 ◽  
Author(s):  
Gyubong Cho ◽  
Hyeonwoo Joo ◽  
Hyunsuk Lee ◽  
Taehyun Nam ◽  
Hyonkwang Choi ◽  
...  

LiCoO2 thin films were fabricated using the metal-induced crystallization (MIC) method. The effect of MIC on the microstructural and electrochemical properties of the films was investigated. The crystal structures and surface morphologies of the deposited films were investigated by X-ray diffraction (XRD), Raman spectroscopy, and field emission electron microscopy (FE-SEM). Charge–discharge tests were carried out in order to examine the electrochemical properties of the films. The LiCoO2 thin film fabricated using MIC exhibited better microstructural and electrochemical properties at a lower annealing temperature.

MRS Advances ◽  
2016 ◽  
Vol 1 (39) ◽  
pp. 2711-2716 ◽  
Author(s):  
V. Vasilyev ◽  
J. Cetnar ◽  
B. Claflin ◽  
G. Grzybowski ◽  
K. Leedy ◽  
...  

ABSTRACTAlN thin film structures have many useful and practical piezoelectric and pyroelectric properties. The potential enhancement of the AlN piezo- and pyroelectric constants allows it to compete with more commonly used materials. For example, combination of AlN with ScN leads to new structural, electronic, and mechanical characteristics, which have been reported to substantially enhance the piezoelectric coefficients in solid-solution AlN-ScN compounds, compared to a pure AlN-phase material.In our work, we demonstrate that an analogous alloying approach results in considerable enhancement of the pyroelectric properties of AlN - ScN composites. Thin films of ScN, AlN and Al1-x ScxN (x = 0 – 1.0) were deposited on silicon (004) substrates using dual reactive sputtering in Ar/N2 atmosphere from Sc and Al targets. The deposited films were studied and compared using x-ray diffraction, XPS, SEM, and pyroelectric characterization. An up to 25% enhancement was observed in the pyroelectric coefficient (Pc = 0.9 µC /m2K) for Sc1-xAlxN thin films structures in comparison to pure AlN thin films (Pc = 0.71 µC/m2K). The obtained results suggest that Al1-x ScxN films could be a promising novel pyroelectric material and might be suitable for use in uncooled IR detectors.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Gyu-bong Cho ◽  
Tae-hoon Kwon ◽  
Tae-hyun Nam ◽  
Sun-chul Huh ◽  
Byeong-keun Choi ◽  
...  

LiNiO2thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2thin film. The ZrO2-coated LiNiO2thin film provided an improved discharge capacity compared to bare LiNiO2thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2coating layer.


2009 ◽  
Vol 68 ◽  
pp. 69-76 ◽  
Author(s):  
S. Thanikaikarasan ◽  
T. Mahalingam ◽  
K. Sundaram ◽  
Tae Kyu Kim ◽  
Yong Deak Kim ◽  
...  

Cadmium iron selenide (Cd-Fe-Se) thin films were deposited onto tin oxide (SnO2) coated conducting glass substrates from an aqueous electrolytic bath containing CdSO4, FeSO4 and SeO2 by potentiostatic electrodeposition. The deposition potentials of Cadmium (Cd), Iron (Fe), Selenium (Se) and Cadmium-Iron-Selenide (Cd-Fe-Se) were determined from linear cathodic polarization curves. The deposited films were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis by x-rays (EDX) and optical absorption techniques, respectively. X-ray diffraction patterns shows that the deposited films are found to be hexagonal structure with preferential orientation along (100) plane. The effect of FeSO4 concentration on structural, morphological, compositional and optical properties of the films are studied and discussed in detail.


2012 ◽  
Vol 151 ◽  
pp. 314-318
Author(s):  
Ching Fang Tseng ◽  
Cheng Hsing Hsu ◽  
Chun Hung Lai

This paper describes microstructure characteristics of MgAl2O4 thin films were deposited by sol-gel method with various preheating temperatures and annealing temperatures. Particular attention will be paid to the effects of a thermal treatment in air ambient on the physical properties. The annealed films were characterized using X-ray diffraction. The surface morphologies of treatment film were examined by scanning electron microscopy and atomic force microscopy. At a preheating temperature of 300oC and an annealing temperature of 700oC, the MgAl2O4 films with 9 μm thickness possess a dielectric constant of 9 at 1 kHz and a dissipation factor of 0.18 at 1 kHz.


2018 ◽  
Vol 21 (1) ◽  
pp. 015-019
Author(s):  
P. Jeyakumar ◽  
S. Thanikaikarasan ◽  
B. Natarajan ◽  
T. Mahalingam ◽  
Luis Ixtlilco

Copper Telluride thin films have been prepared on Fluorine doped Tin Oxide coated conducting glass substrates using electrodeposition technique. Cyclic voltammetric analysis has been carried out to analyze the growth mechanism of the deposited films. Thickness value of the deposited films has been estimated using Stylus profilometry. X-ray diffraction pattern revealed that the prepared films possess polycrystalline in nature. Microstructural parameters such as crystallite size, strain and dislocation density are evaluated using observed X-ray diffraction data. Optical absorption analysis showed that the prepared films are found to exhibit band gap value around 2.03 eV.


2006 ◽  
Vol 514-516 ◽  
pp. 18-22
Author(s):  
Shibin Zhang ◽  
Z. Hu ◽  
Leandro Raniero ◽  
X. Liao ◽  
Isabel Ferreira ◽  
...  

A series of amorphous silicon carbide films were prepared by plasma enhanced chemical vapor deposition technique on (100) silicon wafers by using methane, silane, and hydrogen as reactive resources. A very thin (around 15 Å) gold film was evaporated on the half area of the a- SiC:H films to investigate the metal induced crystallization effect. Then the a-SiC:H films were annealed at 1100 0C for 1 hour in the nitrogen atmosphere. Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to analyze the microstructure, composition and surface morphology of the films. The influences of the high temperature annealing on the microstructure of a-SiC:H film and the metal induced metallization were investigated.


2017 ◽  
Vol 866 ◽  
pp. 318-321 ◽  
Author(s):  
Nirun Witit-Anun ◽  
Adisorn Buranawong

Titanium aluminum nitride (TiAlN) thin films were deposited by reactive DC magnetron co-sputtering technique on Si substrate. The effect of deposition time on the structure of the TiAlN films was investigated. The crystal structure, surface morphology, thickness and elemental composition were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS) technique, respectively. The results showed that, all the as-deposited films were formed as a (Ti,Al)N solid solution. The as-deposited thin films exhibited a nanostructure with a crystallite size of less than 30 nm. The film thickness increase from 115 nm to 329 nm, while the lattice parameter decrease from 4.206 Å to 4.196 Å, with increasing of the deposition time. Cross section analysis by FE-SEM showed compact columnar and dense morphology as a result of increasing the deposition time. The elemental composition of the as-deposited films varied with the deposition time.


Author(s):  
Mohamed Mounes Alim ◽  
Fayçal Hadj-Larbi ◽  
Rabah Tadjine

The mechanical and electrochemical properties of a low carbon steel alloy were improved with titanium (Ti) nitrides thin films. A nitriding process ensures the adhesion of the deposited thin films and provides the nitrogen source involved in the formation of the desired nitrides. A hybrid reactor was used to permit this duplex surface treatment and to avoid the oxidation of our samples. The X-ray diffraction revealed the formation of nitrided phases (TiN and Ti2N). The scanning electron microscopy showed an improvement in the adhesion of the deposited thin films with increasing negative bias voltages. The nanohardness of the duplex treated samples was found to be improved. The results obtained after the corrosion tests indicate a reduction of electrochemical activity and therefore an improvement of corrosion resistance.


1991 ◽  
Vol 232 ◽  
Author(s):  
A. Waknis ◽  
E. Haftek ◽  
M. Tan ◽  
J. A. Barnard ◽  
E. Tsang

ABSTRACTPeriodic multilayer thin films of the form (xAl/yNi)n were grown by alternate deposition of pure Al and Ni using dc-magnetron sputtering. The thicknesses of the individual Al and Ni layers are given by x and y, respectively, and the total number of bilayer units is n. For this set of experiments, x was fixed at 3.5 nm while y was systematically varied from 2.4 to 154 nm. The films were tested in as-deposited and annealed states for magnetic properties using a vibrating sample magnetometer and for crystal structure by x-ray diffraction. In both the as-deposited and annealed samples the magnetization per unit volume of Ni declined as the Ni layer thickness decreased. This result can be interpreted in terms of a magnetically ‘dead’ layer at the Al/Ni interfaces. The width of the dead layer increased from 2.9 nm to 5.8 nm on annealing. Magnetic properties were correlated with crystal structure experiments by x-ray diffraction. As-deposited films yielded a Ni(111) texture. The Ni (111) peak decreased in intensity and broadened as the Ni thickness declined. Annealing produced evidence for the growth of the intermetallic NiAl3.


2009 ◽  
Vol 68 ◽  
pp. 44-51 ◽  
Author(s):  
S. Thanikaikarasan ◽  
T. Mahalingam ◽  
S.R. Srikumar ◽  
Tae Kyu Kim ◽  
Yong Deak Kim ◽  
...  

Thin films of CdSe were electrodeposited on tin oxide coated conducting glass substrates at various bath temperatures. The deposited films were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). X-ray diffraction studies revealed that the deposited films are found to be hexagonal structure with preferential orientation along (002) plane. The microstructural parameters such as crystallite size, R.M.S strain, dislocation density, stacking fault probability were calculated using x-ray line profile analysis technique. The variation of microstructural parameters with bath temperature and film thickness were studied and discussed.


Sign in / Sign up

Export Citation Format

Share Document