Improvement of Mechanical and Electrochemical Properties of Titanium Thin Films Deposited by Duplex Treatment

Author(s):  
Mohamed Mounes Alim ◽  
Fayçal Hadj-Larbi ◽  
Rabah Tadjine

The mechanical and electrochemical properties of a low carbon steel alloy were improved with titanium (Ti) nitrides thin films. A nitriding process ensures the adhesion of the deposited thin films and provides the nitrogen source involved in the formation of the desired nitrides. A hybrid reactor was used to permit this duplex surface treatment and to avoid the oxidation of our samples. The X-ray diffraction revealed the formation of nitrided phases (TiN and Ti2N). The scanning electron microscopy showed an improvement in the adhesion of the deposited thin films with increasing negative bias voltages. The nanohardness of the duplex treated samples was found to be improved. The results obtained after the corrosion tests indicate a reduction of electrochemical activity and therefore an improvement of corrosion resistance.

2021 ◽  
Vol 800 ◽  
pp. 140249
Author(s):  
Juan Macchi ◽  
Steve Gaudez ◽  
Guillaume Geandier ◽  
Julien Teixeira ◽  
Sabine Denis ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Gyu-bong Cho ◽  
Tae-hoon Kwon ◽  
Tae-hyun Nam ◽  
Sun-chul Huh ◽  
Byeong-keun Choi ◽  
...  

LiNiO2thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2thin film. The ZrO2-coated LiNiO2thin film provided an improved discharge capacity compared to bare LiNiO2thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2coating layer.


2013 ◽  
Vol 65 (1) ◽  
Author(s):  
E. Hamzah ◽  
C. L. Khohr ◽  
Ahmad Abdolahi ◽  
Z. Ibrahim

In this work, the iron bacteria were cultured and inoculated into the cooling water before immersion, and low carbon steel coupons were immersed for one month. Then, microbially influenced corrosion (MIC) of carbon steel in the presence of these bacteria was investigated using scanning electron microscopy (SEM), x-ray diffraction spectroscopy (XRD) and weight loss methods. SEM results showed that large amounts of corrosion products and heterogeneous biofilm layer were formed on the coupon surface. SEM also revealed the uniform-pitting corrosion on the steel surface due to bacteria colonization. XRD results show that the main constituents present in corrosion product are composed of iron oxides and iron hydroxides. 


2017 ◽  
Vol 24 (03) ◽  
pp. 1750036
Author(s):  
MINGYONG SHU ◽  
HAIYING YIN ◽  
QINGDONG ZHONG ◽  
XI SHI ◽  
HONGBO HAN

Enamel glaze was added with glass powders of different sizes and masses and fired into enamel coatings on the surface of low-carbon steel. Acid resistance of the enamel coatings in H2SO4 solution was analyzed by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and mass loss of acid corrosion. As was discovered in research, the acid corrosion quantity in the enamel coatings decreased with the decrease in the particle size of the glass powder when the particle size of the additive glass powder reduced from 100[Formula: see text][Formula: see text]m to 1–2[Formula: see text][Formula: see text]m and heated the prepared enamel coatings in the H2SO4 solution until 80[Formula: see text]C and kept for 48[Formula: see text]h. When the additive amount of the glass powder increased from 5% to 20%, the surface of the enamel coating was smooth and flat with good glossiness and without defects like obvious bubbles and cracks, and the acid corrosion quantity decreased with increase in the additive amount of glass powder, which decreased from 43.24[Formula: see text]mg/cm[Formula: see text]d to 4.28[Formula: see text]mg/cm2.d, satisfying the acid-proof performance requirements of industrial enamel coatings.


2011 ◽  
Vol 399-401 ◽  
pp. 1998-2003 ◽  
Author(s):  
Biao Zhou ◽  
Feng Jin ◽  
Qun Luo ◽  
Qian Li ◽  
Kuo Chih Chou

The high temperature oxidation and microstructure evolution of 55%Al-Zn-Si coated sheets were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). After oxidation, the coatings consisted of three phases including ZnO, Fe2Al5, and FeAl from topcoat to the substrate. The different diffusion rate of Fe and Al result in forming voids at the interface of intermetallic layer and the substrate. A good agreement has been reached between the experimental data and the calculation from Chou diffusion model, which has a good predicted function. Moreover, the characteristic oxidation time and the apparent activation energy were obtained.


1999 ◽  
Vol 06 (06) ◽  
pp. 1299-1306 ◽  
Author(s):  
A. COSULTCHI ◽  
E. GARCÍAFIGUEROA ◽  
A. MUÑOZ-FLORES ◽  
A. GARCÍA-BÓRQUEZ ◽  
B. ZEIFERT ◽  
...  

Reduction of petroleum wells production is often observed and related to the presence of solid deposits adhered on the internal wall of the tubing. A piece of tubing with organic material adhered on its surface was recovered from a Mexican southeastern region well. Its composition and morphology was studied applying scanning electron microscopy with X-ray energy dispersion spectroscopy (SEM-EDXS), X-ray diffraction (XRD) and reflection Fourier Transform Infrared Spectroscopy (FT-IRS). High-condensed hydrocarbons with hydroxyl and carboxyl functional groups and 6.4 wt% total sulfur were found. The adhered-material morphology suggests vitreous solid structure usually identified in polycyclic aromatic compounds. Iron (II, III) oxides and nonstoichiometric sulfides are present; the last, as a corrosion product obtained in petroleum with low H 2 S concentration. Pyrrhotite ( Fe 1-x S ), which exhibits a nonstoichiometric structure, was reported as the active phase of iron oxide catalysts in hydrogen interchange processes.


2010 ◽  
Vol 297-301 ◽  
pp. 88-92 ◽  
Author(s):  
R. Gheriani ◽  
Rachid Halimi

Titanium carbides are well known materials with great scientific and technological interest. The applications of these materials take advantage of the fact that they are very hard, refractory and that they have metallic properties. In this work, we have studied the influence of the heat treatment temperatures (400-1000°C) on the interaction between the titanium thin films and steel substrates. Steel substrates, 100C6 type (AFNOR norms) containing approximately 1 wt % of carbon were coated at 200°C with titanium thin films by magnetron sputtering. The samples were characterized by X-ray diffraction (XRD) and Auger electron spectroscopy (AES). Vikers micro-hardness measurements carried out on the annealed samples showed that the micro-hardness increases with annealing temperature, reaches a maximum (3500 kg/mm2), then decreases progressively. The growth of micro-hardness is due to the diffusion of the carbon, and to the formation of titanium carbide. However, the decrease of micro-hardness is associated with the diffusion of iron and the formation of iron oxide (Fe2O3). At higher temperatures, we note the formation of titanium dioxide (TiO2).


2007 ◽  
Vol 1023 ◽  
Author(s):  
Deepak Dhawan ◽  
Suresh K. Bhargava ◽  
Wojtek Wlodarski ◽  
Kourosh Kalantar-zadeh

AbstractNanoporous Ti (and TiOx) has been formed by anodization of RF sputtered titanium thin films. A solution of 1M (NH4)2SO4 (ammonium sulphate) electrolytes containing 0.5wt% (NH4)F (ammonium fluoride) was used in the anodization process. Different nano and micro structures were obtained. Voltage in a rage of 2 to 10V was employed in the process. It was observed that the magnitude of applied voltage have a significant impact in the formation of different surface morphologies with various nano/micro structures. The anodized titanium thin films were characterised using scanning electron microscopy and X-ray diffraction techniques.


1993 ◽  
Vol 311 ◽  
Author(s):  
M. J. O'Keefe ◽  
S. Horiuchi ◽  
J.J. Chu ◽  
J.J. Rigsbee

ABSTRACTThe crystal structure of sputter deposited chromium thin films on Coming 7059 glass, polytetrafluoroethylene, and cold rolled (110) oriented low carbon steel α-Fe substrates was investigated as a function of O and C incorporation into the growing Cr film. The as-deposited crystal structure of the films was found by X-ray diffraction to be either highly oriented (110) BCC α-Cr or (200) oriented A-15 δ-Cr. Chemical analysis of the films by Auger electron spectroscopy determined that the δ-Cr phaseformed when the combined O and C impurity concentration in the film was ∼15-30 at.%. At total impurity concentrations above ∼30 at.% or below ∼10 at.% standard BCC α-Cr formed. The crystal structure of the films was not influenced by the substrate material. X-ray photoelectron spectroscopy of the Cr 2pl/2-2p3/2 orbitals indicated that the dominate binding state of both the BCC α-Cr and A-15 δ-Cr films was characteristic of elemental Cr. Vacuum annealing of the A-15 δ-Cr films at 500º for one hour transformed the crystal structure into BCC α-Cr without a measurable change in chemical composition. The incorporation of O and C into the growing Cr film is believed to impurity stabilize the A-15 structure and favor its formation over the BCC structure.


Sign in / Sign up

Export Citation Format

Share Document