Frequency Dependent Charge Transport and Spin State Switching Characteristics of Fe(phen)2(NCS)2 in Polymer

2020 ◽  
Vol 20 (5) ◽  
pp. 2803-2812
Author(s):  
Chaitali Mondal ◽  
M. L. Nanda Goswami ◽  
Swapan K. Mandal

We report on the bistability in spin states of spin crossover (SCO) compound Fe(phen)2(NCS)2 in polymer (polypyrrole) by frequency (1–100 kHz) and temperature dependent (305–457 K) electrical conductivity measurements. The structure and growth of SCO compounds in conducting polymer are obtained by scanning electron microscopy, X-ray diffraction and optical absorption measurements. The thermal dependence of ac conductivity σ(ω) shows the clear formation of a hysteresis loop in its cooling and heating cycle due to the difference in conductivity in high spin and low spin state. The size, shape and width of the hysteresis loops are found to be critically dependent on the applied frequency and/or the ratio between SCO and polymer. The ac conductivity is found to exhibit a dispersive behavior following Jonscher’s law: σ(ω) ∝ ωn below a critical frequency ωc, above which it is found to monotonically decrease with increasing frequency. The thermal dependence of the exponent n and ωc is also explored. The charge transport phenomena are explained in the framework of hopping of charge carriers. The data reveals that addition of polymer can play an important role to tune the conductivity of SCO compounds and its spin state dependence characteristics which may be quite helpful for fabricating future spin-based devices. Temperature dependent magnetic susceptibility measurement also confirms the spin transition behavior of the SCO/ppy composite samples. These SCO/ppy composite samples can be taken as the reliable nanomaterials fabricated with the concept of future spin based nanoarchitectonics.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Supratim Basak ◽  
Ajay Kumar Botcha ◽  
M. Thameem Ansari ◽  
Rajadurai Chandrasekar

A dual functional nanohybrid object combining photonic and magnetic properties was successfully prepared through a “bottom-up” self-assembly approach. In this method, spin transition Fe(II) coordination nanoparticles and optical wave guiding organic nanorods were generated in situ and successfully integrated together in a single pot through self-assembly. The Fe(II) nanoparticles coated on organic nanorods (nanohybrids) display temperature dependent reversible spin transition (Paramagnetic; diamagnetic; ) behavior. The nano-hybrids show efficient optical wave guiding behavior, which demonstrates the future possibility to perform light induced excited spin state trapping (LIESST) experiments on a single spin transition nanoparticle level. These photonic and magnetic “nanohybrids” offer promising option to externally manipulate spin state of the spin transition nanoparticles using temperature as well as remote laser light.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1836
Author(s):  
Rachid Traiche ◽  
Hassane Oubouchou ◽  
Kamel Boukheddaden

Among the large family of spin-crossover materials, binuclear systems play an important role due to their specific molecular configurations, allowing the presence of multi-step transitions and elastic frustration. Although this issue benefited from a significant number of spin-based theories, there is almost no elastic description of the spin transition phenomenon in binuclear systems. To overcome this deficiency, in this work we develop the first elastic modeling of thermal properties of binuclear spin-crossover solids. At this end, we investigated a finite spin-crossover open chain constituted of elastically coupled binuclear (A = B) blocks, ⋯A=B−A=B−A=B⋯, in which the considered equivalent A and B sites may occupy two configurations, namely low-spin (LS) and high-spin (HS) states. The sites of the binuclear unit interact via an intramolecular spring and couple to the neighboring binuclear units via other springs. The model also includes the change of length inside and between the binuclear units subsequent to the spin state changes. When injecting an elastic frustration inside the binuclear unit in the LS state, competing interactions between the intra- and the inter-binuclear couplings emerge. The latter shows that according to the intra- and inter-binuclear elastic constants and the strength of the frustration, multi-step transitions are derived, for which a specific self-organization of type (HS = HS)-(LS-LS)-(HS = HS)⋯ is revealed and discussed. Finally, we have also studied the relaxation of the metastable photoinduced HS states at low temperature, in which two relaxation regimes with transient self-organized states were identified when monitoring the elastic frustration rate or the ratio of intra- and intermolecular elastic interactions. These behaviors are reminiscent of the thermal dependence of the order parameters of the system. The present model opens several possibilities of extensions of elastic frustrations acting in polynuclear spin-crossover systems, which may lead to other types of spin-state self-organizations and relaxation dynamics.


Author(s):  
Rose Emergo ◽  
Steve Brockett ◽  
Pat Hamilton

Abstract A single power amplifier-duplexer device was submitted by a customer for analysis. The device was initially considered passing when tested against the production test. However, further electrical testing suggested that the device was stuck in a single power mode for a particular frequency band at cold temperatures only. This paper outlines the systematic isolation of a parasitic Schottky diode formed by a base contactcollector punch through process defect that pulled down the input of a NOR gate leading to the incorrect logic state. Note that this parasitic Schottky diode is parallel to the basecollector junction. It was observed that the logic failure only manifested at colder temperatures because the base contact only slightly diffused into the collector layer. Since the difference in the turn-on voltages between the base-collector junction and the parasitic Schottky diode increases with decreasing temperature, the effect of the parasitic diode is only noticeable at lower temperatures.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 860
Author(s):  
Ivan R. Kennedy ◽  
Migdat Hodzic

Despite the remarkable success of Carnot’s heat engine cycle in founding the discipline of thermodynamics two centuries ago, false viewpoints of his use of the caloric theory in the cycle linger, limiting his legacy. An action revision of the Carnot cycle can correct this, showing that the heat flow powering external mechanical work is compensated internally with configurational changes in the thermodynamic or Gibbs potential of the working fluid, differing in each stage of the cycle quantified by Carnot as caloric. Action (@) is a property of state having the same physical dimensions as angular momentum (mrv = mr2ω). However, this property is scalar rather than vectorial, including a dimensionless phase angle (@ = mr2ωδφ). We have recently confirmed with atmospheric gases that their entropy is a logarithmic function of the relative vibrational, rotational, and translational action ratios with Planck’s quantum of action ħ. The Carnot principle shows that the maximum rate of work (puissance motrice) possible from the reversible cycle is controlled by the difference in temperature of the hot source and the cold sink: the colder the better. This temperature difference between the source and the sink also controls the isothermal variations of the Gibbs potential of the working fluid, which Carnot identified as reversible temperature-dependent but unequal caloric exchanges. Importantly, the engine’s inertia ensures that heat from work performed adiabatically in the expansion phase is all restored to the working fluid during the adiabatic recompression, less the net work performed. This allows both the energy and the thermodynamic potential to return to the same values at the beginning of each cycle, which is a point strongly emphasized by Carnot. Our action revision equates Carnot’s calorique, or the non-sensible heat later described by Clausius as ‘work-heat’, exclusively to negative Gibbs energy (−G) or quantum field energy. This action field complements the sensible energy or vis-viva heat as molecular kinetic motion, and its recognition should have significance for designing more efficient heat engines or better understanding of the heat engine powering the Earth’s climates.


2013 ◽  
Vol 646 ◽  
pp. 59-66 ◽  
Author(s):  
Arcady Zhukov ◽  
Margarita Churyukanova ◽  
Lorena Gonzalez-Legarreta ◽  
Ahmed Talaat ◽  
Valentina Zhukova ◽  
...  

We studied the effect ofthe magnetoelastic ansitropy on properties of nanostructured glass-coated microwires with soft magnetic behaviour (Finemet-type microwires of Fe70.8Cu1Nb3.1Si14.5B10.6, Fe71.8Cu1Nb3.1Si15B9.1 and Fe73.8Cu1Nb3.1Si13B9.1 compositions) and with granular structure (Cu based Co-Cu microwires). The magnetoelastic energy originated from the difference in thermal expansion coefficients of the glass and metallic alloy during the microwires fabrication, affected the hysteresis loops, coercivity and heat capacity of Finemet-type microwires. Hysteresis loops of all as-prepared microwires showed rectangular shape, typical for Fe-rich microwires. As expected, coercivity, HC, of as-prepared microwires increases with decreasing of the ratio ρ defined as the ratio between the metallic nucleus diameter, d to total microwire diameter, D. On the other hand we observed change of heat capacity in microwires with different ratio ρ. In the case of Co-Cu microwires ρ- ratio affected the structure and the giant magneto-resistance of obtained microwires.


1970 ◽  
Vol 37 (2) ◽  
pp. 259-267 ◽  
Author(s):  
G. C. Cheeseman ◽  
Dorothy J. Knight

SummaryThe dissociation of casein aggregates by the detergent sodium dodecyl sulphate (SDS) gave rise to difference spectra and these spectra were characteristic for each of the different types of casein. Increase in absorption by the chromophore groups, tyrosine and tryptophan, when αs1- and β-casein aggregates were dissociated indicated binding of the detergent at regions of the molecule containing these residues. A decrease in absorption when κ-casein was dissociated indicated that the tyrosine and tryptophan residues were not in the region of the molecule to which the detergent was bound and that in the κ-casein aggregate these residues were in a more hydrophobic environment. Peaks on the difference spectra were obtained at 280 and 288 nm for αs1-casein and 284 and 291 nm for β-casein and troughs at 278 and 286 nm for κ-casein. The difference spectrum reached a maximum value when the αsl- and β-casein aggregates were dissociated and the further binding of SDS did not alter this value. The large negative change in the difference spectrum of κ-casein did not occur until after most of the aggregates were dissociated and did not reach a maximum until binding with SDS was complete. The value obtained for ΔOD was found to be temperature-dependent for β-casein-SDS interaction, but not for αs1- and κ-casein. Changes in spectra were also observed when αs1- and κ-casein interacted to form aggregates. The data obtained confirmed the importance of hydrophobic binding in casein aggregate formation and indicated the possible involvement of tyrosine and tryptophan residues in this binding.


1976 ◽  
Vol 54 (14) ◽  
pp. 1454-1460 ◽  
Author(s):  
T. Tiedje ◽  
R. R. Haering

The theory of ultrasonic attenuation in metals is extended so that it applies to quasi one and two dimensional electronic systems. It is shown that the attenuation in such systems differs significantly from the well-known results for three dimensional systems. The difference is particularly marked for one dimensional systems, for which the attenuation is shown to be strongly temperature dependent.


A summary is given of some present ideas on the mechanism of work-hardening of single crystals and polycrystalline materials. In particular, the difference is stressed between the three stages of hardening: stage I, or easy glide; stage II, the region of rapid hardening accompanied by short slip lines; and stage III, the region of slow or parabolic hardening which is temperature-dependent and in which long slip bands are formed.


2012 ◽  
Vol 1 (1) ◽  
pp. Q4-Q7 ◽  
Author(s):  
Z. Liu ◽  
T. P. Chen ◽  
Y. Liu ◽  
M. Yang ◽  
J. I. Wong ◽  
...  

2003 ◽  
Vol 784 ◽  
Author(s):  
A. K. Tagantsev ◽  
P. Muralt ◽  
J. Fousek

ABSTRACTA simple theory for the shape of the piezoelectric hysteresis loops (piezoelectric coefficient d vs. applied electric field E) is developed for the case of non-ferroelelastic 180° switching in ferroelectrics. The theory provides explanations for specific features of piezoelectric hysteresis loops, which have been observed in single crystals, thin films and in ceramics in particular. The piezoelectric coefficient may show a “hump”, i.e. when E decreases from the tip of the loop down to zero, d passes through a maximum, and a “nose”, i.e. a self-crossing of the loop close to its tips. The theory also explains the difference in the coercive fields seen in the polarization and piezoelectric loops.


Sign in / Sign up

Export Citation Format

Share Document