Application of Artificial Neural Network Over Nickel-Based Catalyst for Combined Steam-Carbon Dioxide of Methane Reforming (CSDRM)

2020 ◽  
Vol 20 (9) ◽  
pp. 5716-5719 ◽  
Author(s):  
Cho Hwe Kim ◽  
Young Chul Kim

The application of artificial neural network (ANN) for modeling, combined steam-carbon dioxide reforming of methane over nickel-based catalysts, was investigated. The artificial neural network model consisted of a 3-layer feed forward network, with hyperbolic tangent function. The number of hidden neurons is optimized by minimization of mean square error and maximization of R2 (R square, coefficient of determination) and set of 8 neurons. With feed ratio, flow rate, and temperature as independent variables, methane, carbon dioxide conversion, and H2/CO ratio, were measured using artificial neural network. Coefficient of determination (R2) values of 0.9997, 0.9962, and 0.9985 obtained, and MAE (Mean Absolute Error), MSE (Mean Squared Error), RMSE (Root Mean Squared Error), and MAPE (Mean Absolute Percentage Error) showed low value. This study indicates ANN can successfully model a highly nonlinear process and function.

Author(s):  
Leonardo Fabio León Marenco ◽  
Luiza Pereira Oliveira ◽  
Daniella Lopez Vale ◽  
Maiara Oliveira Salles

Abstract An artificial neural network was used to build models caple of predicting and quantifying vodka adulteration with methanol and/or tap water. A voltammetric electronic tongue based on gold and copper microelectrodes was used, and 310 analyses were performed. Vodkas were adulterated with tap water (5 to 50% (v/v)), methanol (1 to 13% (v/v)), and with a fixed addition of 5% methanol and tap water varying from 5 to 50% (v/v). The classification model showed 99.5% precision, and it correctly predicted the type of adulterant in all samples. Regarding the regression model, the root mean squared error was 3.464% and 0.535% for the water and methanol addition, respectively, and the prediction of the adulterant content presented an R2 0.9511 for methanol and 0.9831 for water adulteration.


2021 ◽  
Vol 5 (3) ◽  
pp. 439-445
Author(s):  
Dwi Marlina ◽  
Fatchul Arifin

The number of tourists always fluctuates every month, as happened in Kaliadem Merapi, Sleman. The purpose of this research is to develop a prediction system for the number of tourists based on artificial neural networks. This study uses an artificial neural network for data processing methods with the backpropagation algorithm. This study carried out two processes, namely the training process and the testing process with stages consisting of: (1) Collecting input and target data, (2) Normalizing input and target data, (3) Creating artificial neural network architecture by utilizing GUI (Graphical User Interface) Matlab facilities. (4) Conducting training and testing processes, (5) Normalizing predictive data, (6) Analysis of predictive data. In the data analysis, the MSE (Mean Squared Error) value in the training process is 0.0091528 and in the testing process is 0.0051424. Besides, the validity value of predictive accuracy in the testing process is around 91.32%. The resulting MSE (Mean Squared Error) value is relatively small, and the validity value of prediction accuracy is relatively high, so this system can be used to predict the number of tourists in Kaliadem Merapi, Sleman.  


Author(s):  
Nabeel H. Al-Saati ◽  
Isam I. Omran ◽  
Alaa Ali Salman ◽  
Zainab Al-Saati ◽  
Khalid S. Hashim

Abstract Autoregressive Integrated Moving Average (ARIMA) Box-Jenkins models combine the autoregressive and moving average models to a stationary time series after the appropriate transformation, while the nonlinear autoregressive (N.A.R.) or the autoregressive neural network (ARNN) models are of the kind of multi-layer perceptron (M.L.P.), which compose an input layer, hidden layer and an output layer. Monthly streamflow at the downstream of the Euphrates River (Hindiya Barrage) /Iraq for the period January 2000 to December 2019 was modeled utilizing ARIMA and N.A.R. time series models. The predicted Box-Jenkins model was ARIMA (1,1,0) (0,1,1), while the predicted artificial neural network (N.A.R.) model was (M.L.P. 1-3-1). The results of the study indicate that the traditional Box-Jenkins model was more accurate than the N.A.R. model in modeling the monthly streamflow of the studied case. Performing a one-step-ahead forecast during the year 2019, the forecast accuracy between the forecasted and recorded monthly streamflow for both models was as follows: the Box-Jenkins model gave root mean squared error (RMSE = 48.7) and the coefficient of determination R2 = 0.801), while the (NAR) model gave (RMSE = 93.4) and R2 = 0.269). Future projection of the monthly stream flow through the year 2025, utilizing the Box-Jenkins model, indicated the existence of long-term periodicity.


2020 ◽  
Vol 10 (5) ◽  
pp. 1871 ◽  
Author(s):  
Tuan Anh Pham ◽  
Hai-Bang Ly ◽  
Van Quan Tran ◽  
Loi Van Giap ◽  
Huong-Lan Thi Vu ◽  
...  

Axial bearing capacity of piles is the most important parameter in pile foundation design. In this paper, artificial neural network (ANN) and random forest (RF) algorithms were utilized to predict the ultimate axial bearing capacity of driven piles. An unprecedented database containing 2314 driven pile static load test reports were gathered, including the pile diameter, length of pile segments, natural ground elevation, pile top elevation, guide pile segment stop driving elevation, pile tip elevation, average standard penetration test (SPT) value along the embedded length of pile, and average SPT blow counts at the tip of pile as input variables, whereas the ultimate load on pile top was considered as output variable. The dataset was divided into the training (70%) and testing (30%) parts for the construction and validation phases, respectively. Various error criteria, namely mean absolute error (MAE), root mean squared error (RMSE), and the coefficient of determination (R2) were used to evaluate the performance of RF and ANN algorithms. In addition, the predicted results of pile load tests were compared with five empirical equations derived from the literature and with classical multi-variable regression. The results showed that RF outperformed ANN and other methods. Sensitivity analysis was conducted to reveal that the average SPT value and pile tip elevation were the most important factors in predicting the axial bearing capacity of piles.


2021 ◽  
Vol 23 (07) ◽  
pp. 121-135
Author(s):  
Anil Kumar Bisht ◽  
◽  
Ravendra Singh ◽  
Rakesh Bhutiani ◽  
Ashutosh Bhatt ◽  
...  

Water Quality (WQ) modeling and forecasting are very challenging for water management bodies due to the complex and nonlinear relationship between the parameters responsible for determining water quality. The main focus of this paper is the water quality prediction of the Ganges River by analyzing the impact of one of the critical configuration parameters of a neural network known as the learning rate. The proposed prediction model based on an artificial neural network (ANN) consists of different sets of experiments performed by comparing twelve different training functions against the variation in learning rates. A total of 360 experiments have been conducted on the dataset collected over the period 2001 to 2015 with five stations along the Ganges River in the state of Uttarakhand, India. All experiments have been conducted in MATLAB software. The ANN-based program is written in Matlab’s NN-Toolbox. As input parameters, we have used temperature, pH, dissolved oxygen (DO), biochemical oxygen demand (BOD), and total coliform. The water quality standard set by the Central Pollution Control Board of India has been used. The performance of the developed model has been calculated based on Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE). Trail training function-based artificial neural network models indicate higher predictive accuracy when compared to other models developed using the remaining eleven training functions when the learning rate is set to 0.04. In conclusion, ANN has the ability to efficiently predict the water quality of rivers and the learning rate has a greater impact on the development of such predictive models. So, it is required to be tuned very carefully.


Author(s):  
Wahyudin S

Inflasi merupakan indikator makro ekonomi yang sangat penting. Berbagai macam metoda prediksi inflasi Indonesia telah dipublikasikan. Namun pencarian metoda prediksi inflasi yang lebih akurat masih menjadi topik menarik. Pada penulisan ini diusulkan sebuah metoda baru untuk prediksi inflasi memakai model ARIMA dan Artificial Neural Network (ANN). Data inflasi yang digunakan adalah data inflasi bulanan year-on-year dari tahun 2010 sampai dengan tahun 2018 yang diterbitkan oleh Badan Pusat Statistik (BPS). Pertama dibuat 2 model ARIMA yaitu model ARIMA tanpa siklus tahunan dan dengan siklus tahunan. Prosedur standar dan diagostics test telah dilakukan antara lain: summary of statistics, analysis of variance (ANOVA), significance of coefficients test, residuals normality, heterocesdacity, dan stability. Dari hasil perbandingan kinerja memakai Root Mean Squared Error (RMSE) diperoleh bahwa model ARIMA dengan siklus tahunan lebih baik. Model tersebut berupa model ARIMA (2,1,0) (2,0,0) [12]. Kemudian, untuk meningkatkan kinerja prediksi inflasi, ANN telah dibuat berbasis model ARIMA tersebut. Model ANN memakai satu hidden layer dan dua neuron. Hasil pengujian menunjukkan bahwa model ANN menghasilkan RMSE yang lebih kecil daripada model ARIMA (2,1,0) (2,0,0) [12]. Hal ini kemungkinan disebabkan oleh kemampuan mengolah hubungan nonlinear antara variabel target dan variabel penjelas.


2019 ◽  
Vol 8 (3) ◽  
pp. 5477-5482

E-sensor which are generally based on concept of E-nose are specially made to distinguish odours .In the present research work. E-sensor is developed using artificial intelligence technique to identify the concentration of carbon monoxide in a polluted environment. Data record access using Metal oxide sensor. The available data is broken into the number of segments .The length of data segment and the neurons in hidden layer is varied in number to find the optimized model of artificial neural network model using Mat Lab Coding. The artificial neural network model is optimized by verification in terms of mean squared error and regression. The regression is verified for training ,testing, validation and all. The mean squared error and regression are the artificial neural network model performance parameter


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
S. Karthiyaini ◽  
K. Senthamaraikannan ◽  
J. Priyadarshini ◽  
Kamal Gupta ◽  
M. Shanmugasundaram

The present study is to compare the multiple regression analysis (MRA) model and artificial neural network (ANN) model designed to predict the mechanical strength of fiber-reinforced concrete on 28 days. The model uses the data from early literatures; the data consist of tensile strength of fiber, percentage of fiber, water/cement ratio, cross-sectional area of test specimen, Young’s modulus of fiber, and mechanical strength of control specimen, and these were used as the input parameters; the respective strength attained was used as the target parameter. The models are created and are used to predict compressive, split tensile, and flexural strength of fiber admixed concrete. These models are evaluated through the statistical test such as coefficient of determination (R2) and root mean squared error (RMSE). The results show that these parameters produce a valid model through both MRA and ANN, and this model gives more precise prediction for the fiber admixed concrete.


2018 ◽  
Vol 3 (6) ◽  
pp. 10 ◽  
Author(s):  
Azme Bin Khamis ◽  
Phang Hou Yee

The goal of this study is to compare the forecasting performance of classical artificial neural network and the hybrid model of artificial neural network and genetic algorithm. The time series data used is the monthly gold price per troy ounce in USD from year 1987 to 2016. A conventional artificial neural network trained by back propagation algorithm and the hybrid forecasting model of artificial neural network and genetic algorithms are proposed.  Genetic algorithm is used to optimize the of artificial neural network neurons. Three forecasting accuracy measures which are mean absolute error, root mean squared error and mean absolute percentage error are used to compare the accuracy of artificial neural network forecasting and hybrid of artificial neural network and genetic algorithm forecasting model. Fitness of the model is compared by using coefficient of determination. The hybrid model of artificial neural network is suggested to be used as it is outperformed the classical artificial neural network in the sense of forecasting accuracy because its coefficient of determination is higher than conventional artificial neural network by 1.14%. The hybrid model of artificial neural network and genetic algorithms has better forecasting accuracy as the mean absolute error, root mean squared error and mean absolute percentage error is lower than the artificial neural network forecasting model.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yasir Hassan Ali ◽  
Roslan Abd Rahman ◽  
Raja Ishak Raja Hamzah

The thickness of an oil film lubricant can contribute to less gear tooth wear and surface failure. The purpose of this research is to use artificial neural network (ANN) computational modelling to correlate spur gear data from acoustic emissions, lubricant temperature, and specific film thickness (λ). The approach is using an algorithm to monitor the oil film thickness and to detect which lubrication regime the gearbox is running either hydrodynamic, elastohydrodynamic, or boundary. This monitoring can aid identification of fault development. Feed-forward and recurrent Elman neural network algorithms were used to develop ANN models, which are subjected to training, testing, and validation process. The Levenberg-Marquardt back-propagation algorithm was applied to reduce errors. Log-sigmoid and Purelin were identified as suitable transfer functions for hidden and output nodes. The methods used in this paper shows accurate predictions from ANN and the feed-forward network performance is superior to the Elman neural network.


Sign in / Sign up

Export Citation Format

Share Document