Microstructure and Sintering Behaviors of Al–Cr–xSi (at.%) System Alloys Processed by Spark Plasma Sintering

2021 ◽  
Vol 21 (9) ◽  
pp. 4768-4772
Author(s):  
Yong-Ho Kim ◽  
Hyo-Sang Yoo ◽  
Hyeon-Taek Son

In this study, microstructure and sintering behaviors of the gas-atomized Al-(25 or 30) Cr–xSi alloy (x = 5, 10 and 20 at.%) during spark plasma sintering (SPS) process were investigated. Gas-atomized alloy powders were manufactured using Ar gas atomizer process. These alloy powders were consolidated using SPS process at different temperature under pressure 60 MPa in vacuum. Microstructures of the gas-atomized powders and sintered alloys were analyzed using scanning electron microscopy (SEM) with energy–dispersive X-ray spectrometer (EDS), and transmission electron microscopy (TEM). Hardness of the SPS sintered alloys was measured using micro Vickers hardness tester. The Al–Cr–Si bulks with high Cr and Si content were produced successfully using SPS sintering process without crack and obtained fully dense specimens close to nearly 100% T. D. (Theoretical Density). The maximum values of the hardness were 834 Hv for the sintered specimen of the gas atomized Al–30Cr–20Si alloy. Enhancement of hardness value was resulted from the formation of the multi-intermetallic compound with the hard and thermally stable phases and fine microstructure by the addition of high Cr and Si.

2004 ◽  
Vol 19 (10) ◽  
pp. 3004-3008 ◽  
Author(s):  
Lianjun Wang ◽  
Wan Jiang ◽  
Lidong Chen ◽  
Guangzhao Bai

Nanostructured Ti5Si3–TiC–Ti3SiC2 and Ti5Si3–TiC composites were in situfabricated through the spark plasma sintering (SPS) technique using Ti and SiC powders as reactants. It was found that the composites could be prepared in arelatively short time (6 min at 1260 °C) above 98% theoretical density. The phase constituents and microstructures of the samples were analyzed by x-ray diffractionand observed by scanning electron microscopy. Transmission electron microscopywas used for detailed microstructural analysis. The results showed that the reaction products mainly consisted of Ti5Si3 and TiC phases or Ti5Si3, TiC and Ti3SiC2phases, depending on the molar ratio of reactants (Ti to SiC). The composites exhibited fine microstructure; TiC grain size was less than 200 nm. Fracturetoughness at room temperature was also measured by indentation tests.


2004 ◽  
Vol 449-452 ◽  
pp. 1109-1112 ◽  
Author(s):  
No Jin Park ◽  
Suck Jong Lee ◽  
In Sung Lee ◽  
Kyeong Sik Cho ◽  
Sung Jin Kim

In order to control the grain size of Cu-15.0Zn-8.1Al shape memory alloy, the spark plasma sintering (SPS) technique was applied. The sintering processes were carried out under different atmospheres with a different powder size. The sintered bodies were denser under the Ar+4%H2 gas atmosphere than under the 100% Ar gas. By using the small-sized powders, the fine microstructure with average grain size of 2~3􀀀 was obtained. With the large-sized powders, the single martensitic phase was observed with the average grain size of 70~72􀀀 . When the starting powders with different sizes were mixed, it is confirmed that the average grain size of the manufactured alloys was 15􀀀 , but the distribution of grain size was not uniform.


2006 ◽  
Vol 317-318 ◽  
pp. 155-158
Author(s):  
Sang Mo Koo ◽  
Seung Hwan Shim ◽  
Jong Won Yoon ◽  
Kwang Bo Shim

The dense Pb(Zr0.52Ti0.48)O3 (PZT) piezoelectric ceramics have been prepared at a low temperature by a spark plasma sintering (SPS) method without excess PbO addition and their structural features including domains were systematically investigated. The fine microstructure consisting of submicrometer-sized grains as well as relative density reaching 99% was achieved by sintering at 950°C which is 400°C lower than that of pressureless sintering (PLS). Transmission electron microscopy (TEM) results confirmed that the sintered specimen contained very dense domain structures inside each grain, showing the nanoscaled single-domains even at the small grains (below 100 nm). The SPS-processed PZT exhibited better piezoelectric properties than those of the PLS-processed one, which is attributed to its fine-microstructural feature.


2007 ◽  
Vol 336-338 ◽  
pp. 1310-1312
Author(s):  
Hai Bo Feng ◽  
De Chang Jia ◽  
Yu Zhou ◽  
Qing Chang Meng

The in situ TiB whisker reinforced titanium matrix composites were prepared by mechanical alloying followed by spark plasma sintering. X-ray diffraction, scanning electron microscopy and transmission electron microscopy were used to characterize the microstructure of the TiB whiskers. The effect of sintering temperature on morphologies of in situ TiB whiskers was evaluated. With the increase of spark plasma sintering temperature, the average diameter of in situ TiB whiskers increased. The in situ TiB whiskers exhibited a hexagonal shape with (100), (101) and (10 1 ) planes at the transverse section and a growth orientation of [010]TiB direction.


Author(s):  
Chia-Hung Kuo ◽  
Chii-Shyang Hwang ◽  
Jie-Ren Ku ◽  
Ming-Shan Jeng ◽  
Fang-Hei Tsau

PbTe is a conventional thermoelectric material for thermoelectric generator at intermediate temperature. Small grain size effect has been reported to improve PbTe ZT values (figure of merit). We report a combination process of attrition milling and spark plasma sintering (SPS) for preparing PbTe bulk materials with small grain sizes. The PbTe powders were milled by attrition under 600 rpm for 6–96 h and followed by SPS process under the sintering temperature of 573–773 K, the heating rate of 100 K/min, and the sintering pressure of 50 MPa. The powders and bulk materials as-prepared were then studied by X-ray diffraction patterns, scanning electron microscopy images, and transmission electron microscopy images. Transport properties of polycrystalline PbTe bulks were evaluated through temperature dependent thermal conductivity measurements.


2021 ◽  
Vol 10 (3) ◽  
pp. 578-586
Author(s):  
Lin-Kun Shi ◽  
Xiaobing Zhou ◽  
Jian-Qing Dai ◽  
Ke Chen ◽  
Zhengren Huang ◽  
...  

AbstractA nano-laminated Y3Si2C2 ceramic material was successfully synthesized via an in situ reaction between YH2 and SiC using spark plasma sintering technology. A MAX phase-like ternary layered structure of Y3Si2C2 was observed at the atomic-scale by high resolution transmission electron microscopy. The lattice parameters calculated from both X-ray diffraction and selected area electron diffraction patterns are in good agreement with the reported theoretical results. The nano-laminated fracture of kink boundaries, delamination, and slipping were observed at the tip of the Vickers indents. The elastic modulus and Vickers hardness of Y3Si2C2 ceramics (with 5.5 wt% Y2O3) sintered at 1500 °C were 156 and 6.4 GPa, respectively. The corresponding values of thermal and electrical conductivity were 13.7 W·m-1·K-1 and 6.3×105 S·m-1, respectively.


2009 ◽  
Vol 24 (10) ◽  
pp. 3241-3245 ◽  
Author(s):  
Lianjun Wang ◽  
Wan Jiang ◽  
Lidong Chen ◽  
Zhijian Shen

A simple approach, order–disorder transition (ODT), has been developed to synthesize a novel glass using ZSM-5 as starting materials. In this process, the ZSM-5 powders were pressed uniaxially in a graphite die and rapidly sintered using spark plasma sintering (SPS). High-resolution transmission electron microscopic images revealed that a few crystalline zeolite fragments were still preserved locally inside the SPS consolidated sample. Vickers microhardness and fracture toughness of this as-prepared transparent glass sample at room temperature reaches 7.3 ± 0.2 GPa and 2.0 ± 0.3MPa·m1/2, respectively. It is very interesting that these novel bulk transparent glasses exhibit ultraviolet photoluminescence (PL) properties at about ∼360 nm.


2004 ◽  
Vol 18 (01) ◽  
pp. 87-93 ◽  
Author(s):  
ZHIMIN WANG ◽  
YIDONG WU ◽  
YUANJIN HE

Crystals of MnSi 1.73 were prepared by Spark Plasma Sintering (SPS) technique, analyzed by X-ray diffraction (XRD), and invested by metalogragh and scanning electron microscopy (SEM). The growth processes of the samples were studied. It was found that the Mn–Si powders partly formed MnSi 1.73 crystals at 912–937 K under the mechanical pressure of 20 MPa in low vacuum (about 5.0 Pa), and fully formed MnSi 1.73 crystals after sintered at 1173 K for 15 minutes under 40 MPa.


2017 ◽  
Vol 52 (16) ◽  
pp. 2149-2161 ◽  
Author(s):  
Christophe Perron ◽  
Corinne Arvieu ◽  
Eric Lacoste

An alternative route for producing aluminium matrix reinforced with continuous carbon fibres is proposed in this paper. On the one hand, liquid aluminium does not wet carbon; on the other hand, however, the two form a reactive system leading to carbide formation. A novel way to obtain continuous carbon fibre-reinforced aluminium was investigated, using spark plasma sintering with aluminium foils as raw material. Sintering parameters were adjusted to achieve the effective welding of aluminium foils and penetration of the metal between the filaments. A quality assessment of the fibre/aluminium coupling is presented. Interfaces were then investigated by scanning electron microscopy, transmission electron microscopy and energy-dispersive ray spectroscopy. An effective cohesion of fibres with the matrix was shown. The manageable fibre positioning could result in unidirectional architecture and reinforcement rate should be handled through foil thickness and yarn properties. Using tensile tests, cohesion between aluminium and carbon fibres can be quantified.


Sign in / Sign up

Export Citation Format

Share Document