Observation of Dominant Nuclei and Magic-Sized CdS Nanoparticles in a Single-Phase System

2021 ◽  
Vol 21 (12) ◽  
pp. 5987-5992
Author(s):  
Xiaobo Nie ◽  
Yanming Chen

Cadmium sulfide nanoparticles (CdS NPs) were synthesized by using cadmium acetate and thiourea as precursors and sodium oleate as the surfactant under different cadmium acetate concentrations in anhydrous ethanol. Cadmium (Cd) precursor concentration greatly affected the nucleation-growth of CdS NPs. In extremely dilute solution with a Cd precursor concentration of 0.1 mmol · L−1, an overlapped nucleation and growth corresponding to two pronounced absorption peaks at 310 nm and 350 nm, respectively, was observed. Unparalleled nucleation was dominant within very long reaction time until 10 hours. The nuclei and the resulting magic-sized CdS NPs may be used as seeds to prepare size and shape controllable nanoparticles. On the contrary, at a high Cd precursor concentration (5 mmol · L−1), nucleation and growth were separated. Only one first exciton absorption peak standing for the growth of regular CdS NPs appeared at 440 nm. Many techniques including transmission electron microscopy (TEM), X-ray powder diffraction (XRD), ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectrometers were applied to characterize the morphology, crystalline structure, and optical properties of CdS NPs.

2002 ◽  
Vol 01 (05n06) ◽  
pp. 437-441 ◽  
Author(s):  
HUI WANG ◽  
YINONG LU ◽  
JUNJIE ZHU

Cube-shaped CdS nanoparticles have been successfully prepared by a sonochemical method in an oil-in-water microemulsion. The product was characterized by using techniques including X-ray powder diffraction, high-resolution transmission electron microscopy, energy-dispersive X-ray analysis and UV-visible absorption spectroscopy. This microemulsion system in the presence of high-intensity ultrasound irradiation provides special conditions for the nucleation and growth of the CdS nanoparticles.


1995 ◽  
Vol 418 ◽  
Author(s):  
J. Forbes ◽  
J. Davis ◽  
C. Wong

AbstractThe detonation of explosives typically creates 100's of kbar pressures and 1000's K temperatures. These pressures and temperatures last for only a fraction of a microsecond as the products expand. Nucleation and growth of crystalline materials can occur under these conditions. Recovery of these materials is difficult but can occur in some circumstances. This paper describes the detonation synthesis facility, recovery of nano-size diamond, and plans to synthesize other nano-size materials by modifying the chemical composition of explosive compounds. The characterization of nano-size diamonds by transmission electron microscopy and electron diffraction, X-ray diffraction and Raman spectroscopy will also be reported.


1992 ◽  
Vol 7 (5) ◽  
pp. 1115-1125 ◽  
Author(s):  
P.B. Barna ◽  
A. Csanády ◽  
U. Timmer ◽  
K. Urban

The nucleation and growth of quasicrystalline thin films during sequential vapor deposition of aluminum and manganese on various substrates have been studied at temperatures between 530 and 650 K. The films were analyzed by transmission electron microscopy, electron diffraction, energy dispersive x-ray analysis, replica techniques, and Auger depth profiling. The quasicrystalline phase is identified as icosahedral. It nucleates on the surfaces of the Al films. There is no indication of substantial bulk Mn diffusion. The growth process is governed by diffusion of Al to the quasicrystal surface where it reacts with the incident Mn.


2011 ◽  
Vol 412 ◽  
pp. 263-266
Author(s):  
Hong Wei Zhang ◽  
Li Li Zhang ◽  
Feng Rui Zhai ◽  
Jia Jin Tian ◽  
Can Bang Zhang

The higher mechanical strength of Al87Ce3Ni8.5Mn1.5 nanophase amorphous composites has been obtained with two methods. The first nanophase amorphous composites are directly produced by the single roller spin quenching technology. The method taken for the second nanophase amorphous composites is at first to obtain amorphous single-phase alloy, followed by annealed at different temperatures .The formative condition, the microstructure, the particle size, the volume fraction of α-Al phase and microhardness of nanophase amorphous composites etc have been investigated and compared by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The microstructure of composites produced by the second method is higher than the former, the fabricated material structure of the system is more uniform and the process is easier to control.


2013 ◽  
Vol 802 ◽  
pp. 227-231
Author(s):  
Panida Pilasuta ◽  
Pennapa Muthitamongkol ◽  
Chanchana Thanachayanont ◽  
Tosawat Seetawan

Crystal structure of Zn0.96Al0.02Ga0.02O was analyzed by X-Ray diffraction (XRD) technique and the microstructure was observed by scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD results showed single phase and hexagonal structure a = b = 3.24982 Å, and c = 5.20661 Å. The SEM and TEM results showed the grain size of material arrangement changed after sintering and TEM diffraction pattern confirmed hexagonal crystal structure of Zn0.96Al0.02Ga0.02O after sintering.


2003 ◽  
Vol 802 ◽  
Author(s):  
K. T. Moore ◽  
M. A. Wall ◽  
A. J. Schwartz ◽  
B. W. Chung ◽  
J. G. Tobin ◽  
...  

ABSTRACTHere, we demonstrate the power of electron energy-loss spectroscopy (EELS) in a transmission electron microscope (TEM) to investigate the electronic structure plutonium. Using EELS, TEM, and synchrotron-radiation-based X-ray absorption spectroscopy (XAS), we provide the first experimental evidence that Russell-Saunders (LS) coupling fails for the 5f states of Pu. These results support the assumption that only the use of jj or intermediate coupling is appropriate for the 5f states of Pu. EELS experiments were performed in a TEM and are coupled with image and diffraction data, therefore, the measurements are completely phase specific. It is shown that EELS in a TEM may be used to circumvent the difficulty of producing single-phase or single-crystal samples due to its high spatial resolution.


2006 ◽  
Vol 16 (01n02) ◽  
pp. 127-136
Author(s):  
P. MALAR ◽  
TAPASH RANJAN RAUTRAY ◽  
V. VIJAYAN ◽  
S. KASIVISWANATHAN

Polycrystalline ingots of CuInSe 2 and CuIn 3 Se 5 were synthesized by melt-quench technique starting from the stoichiometric mixture of constituent elements. X-ray Diffraction (XRD) studies confirmed the single-phase nature of the materials. Compositional analysis by Particle Induced X-ray Emission (PIXE) showed that the compounds are near stoichiometric. Thin films of CuInSe 2 and CuIn 3 Se 5 were grown from pre-synthesized CuInSe 2 and CuIn 3 Se 5 powders. The films were polycrystalline, single-phase and near stoichiometric in nature, as indicated by Transmission Electron Microscopy (TEM) and PIXE studies.


1997 ◽  
Vol 12 (2) ◽  
pp. 518-525 ◽  
Author(s):  
In-Tae Kim ◽  
Yoon-Ho Kim ◽  
Su Jin Chung

Ordering and microwave dielectric properties of Ba(Ni1/3Nb2/3)O3 have been investigated using x-ray diffraction, transmission electron microscopy, energy-dispersive spectroscopy, and a network analyzer. Samples sintered at 1400 °C for 2 h were disordered and showed the presence of Nb-rich liquid phase at grain boundary junctions. Degree of ordering increased with following annealing at 1300 °C. Growth of the ordered region during the annealing process was discussed in terms of nucleation and growth. A long-range order parameter was calculated using structure factor. Measurements of microwave dielectric properties showed that permittivity and temperature coefficient of resonant frequency decreased with ordering, and quality factor increased with ordering. The correlation between microwave dielectric properties and ordering was discussed in terms of covalency of bonding, inhomogeneous charge distribution, and defects concentration.


2008 ◽  
Vol 23 (11) ◽  
pp. 2880-2885 ◽  
Author(s):  
Herbert Willmann ◽  
Paul H. Mayrhofer ◽  
Lars Hultman ◽  
Christian Mitterer

Microstructure and hardness evolution of arc-evaporated single-phase cubic Al0.56Cr0.44N and Al0.68Cr0.32N coatings have been investigated after thermal treatment in Ar atmosphere. Based on a combination of differential scanning calorimetry and x-ray diffraction studies, we can conclude that Al0.56Cr0.44N undergoes only small structural changes without any decomposition for annealing temperatures Ta ⩽ 900 °C. Consequently, the hardness decreases only marginally from the as-deposited value of 30.0 ± 1.1 GPa to 29.4 ± 0.9 GPa with Ta increasing to 900 °C, respectively. The film with higher Al content (Al0.68Cr0.32N) exhibits formation of hexagonal (h) AlN at Ta ⩾ 700 °C, which occurs preferably at grain boundaries as identified by analytical transmission electron microscopy. Hence, the hardness increases from the as-deposited value of 30.1 ± 1.3 GPa to 31.6 ± 1.4 GPa with Ta = 725 °C. At higher temperatures, where the size and volume fraction of the h-AlN phase increases, the hardness decreases to 27.5 ± 1.0 GPa with Ta = 900 °C.


2012 ◽  
Vol 02 (01) ◽  
pp. 1250007 ◽  
Author(s):  
LAXMAN SINGH ◽  
U. S. RAI ◽  
K. D. MANDAL ◽  
MADHU YASHPAL

Ultrafine powder of CaCu2.80Zn0.20Ti4O12 ceramic was prepared using a novel semi-wet method. DTA/TG analysis of dry powder gives pre-information about formation of final product around 800°C. The formation of single phase was confirmed by X-ray diffraction analysis. The average particle size of sintered powder of the ceramic obtained from XRD and Transmission electron microscopy was found 59 nm and 102 nm, respectively. Energy Dispersive X-ray studies confirm the stoichiometry of the synthesized ceramic. Dielectric constant of the ceramic was found to be 2617 at room temperature at 1 kHz.


Sign in / Sign up

Export Citation Format

Share Document