Polyamide/Chitosan/Tetraethyl Orthosilicate Electrospun Nanofibers for a Novel and Promising Drug Carrier

2021 ◽  
Vol 21 (12) ◽  
pp. 5912-5919
Author(s):  
Zhi-Yuan Feng ◽  
Chen-Di Wang ◽  
Soo-Jin Park ◽  
Wan Meng ◽  
Long-Yue Meng

Chitosan (CS), the only alkaline polysaccharose available in nature, has always been a promising candidate for drug delivery owing to its excellent biodegradability and biocompatibility. However, inherent solubility and polycationic properties of CS largely hinder electrospinning, which is an efficient method of fabricating nanofibers for drug carriers. To solve this problem and extend the applications of CS, polyamide/chitosan/tetraethyl orthosilicate (PA/CS/TEOS) composite nanofibers were successfully prepared as drug carriers in this study via electrospinning. The PA/CS/TEOS ratios significantly influenced the nanofiber morphology. As the content of each was increased, the beads among the membranes increased initially and then decreased, determined by scanning electron microscopy (SEM). The morphology of the optimum membranes with the ratio of 1:0.13:0.67 was smoother with less beads and uniform fiber diameter. Finally, the membranes with optimum ratios were used as carriers of ofloxacin in the study of drug release performance to identify their future feasibility, which revealed an initial fast release followed by a relatively stable release.

2020 ◽  
Vol 840 ◽  
pp. 368-376 ◽  
Author(s):  
Nur Rofiqoh Eviana Putri ◽  
Dhimas Agung Kurniawan ◽  
Bintang Adi Pradana ◽  
Nadya Alfa Cahaya Imani ◽  
Yuni Kusumastuti

Tissue engineering has shown a remarkable result in medical applications. Further exploration, these multidisciplinary fields are also given a possibility as an alternative medication for intervertebral disc (IVD) degeneration. Focusing on the annulus fibrous repair, to improve the mechanical properties of biomaterials, a composite made of chitosan and polycaprolactone (PCL) was developed in this present study. Due to its tuneable properties, the electrospinning-based method was used in the experiment to create the chitosan/PCL composite. Varies concentration of PCL (11, 12, and 13 wt%) and a different ratio of precursors chitosan to PCL (1:1; 1:3; 1:5) were used to optimize the composition of natural and synthetic polymer in the composite nanofibers. The obtained nanofibers were then characterized using Scanning Electron Microscopy (SEM) to observe the morphology, swelling test, Fourier Transform Infrared (FTIR) spectroscopy, and Differential Scanning Calorimetry (DSC). The results show that the increasing concentration and composition of PCL could form the more homogeneous and larger diameter of nanofiber with fewer beads compare to the lower composition of PCL nanofiber. Meanwhile, the swelling percentage decreases by increasing the amount of PCL. FTIR results also show that all samples of composite nanofibers contain both chitosan and PCL.


2012 ◽  
Vol 591-593 ◽  
pp. 1042-1045 ◽  
Author(s):  
Si Yu Li ◽  
Yan Wei Wang ◽  
Tan Wen Jun

PAN and P(AN-co-MA) nanofibers have been successfully prepared by electrospinning. The mass concentration is 6%-12%, voltage of 15-25 kV, tip-to-collector distance is 25 cm. The morphology of the obtained samples was measured by a Scanning electron microscopy (SEM). The results showed that there were some large beads distributed on the PAN fiber skeleton when the spinning solution concentration is low. With the spinning solution concentration increased, the bead structure is gradually reduced. The fiber diameter increased with the concentration. For the synthetic reaction mixture P(AN-co-MA), it could obtain uniform nanofibers easily


2012 ◽  
Vol 1498 ◽  
pp. 9-14 ◽  
Author(s):  
Ana Paula V. Araújo ◽  
Claure N. Lunardi ◽  
Anderson J. Gomes

ABSTRACTMethotrexate (MTX), is a potent immunomodulating drug and widely used in the treatment of cancer, psoriasis and others disease. Despite its efficacy, the use of MTX is greatly limited due to its toxicity. To solve this problem, we prepared nanoparticles of tetraethyl orthosilicate (NP-TEOS) containing the compound methotrexate (MTX), by the sol-gel method. This drug delivery system (DDS) showed a loading efficiency of 39.7%. Size distribution studies were performed with dynamic light scattering and scanning electron microscopy revealing that these particles were spherical in shape, with a mean diameter between 140-430 nm and a low polydispersity (0.12 – 0.26). Also the particles displayed a low tendency toward aggregation which was confirmed by the low zeta potential -61.4 mV. Profile release showed a slow release loaded with MTX (PBS buffer pH = 7.4). The slow release can be attributed to the low porosity of the NP-TEOS and the extremely low diffusivity of MTX in aqueous media. B16-F10 cells were used to assay the toxicity and uptake of NP-TEOS showing to be nontoxic without MTX making a good candidate for DDS.


2012 ◽  
Vol 457-458 ◽  
pp. 1573-1576 ◽  
Author(s):  
Bin Bin Li ◽  
Zhao Feng Chen ◽  
Zhou Chen ◽  
Jin Lian Qiu ◽  
Yan Qing Zhou ◽  
...  

In this paper, glass wool has been prepared under various rotating speed of centrifugal pan by centrifugal-spinneret-blow process. The fiber diameter of glass wool has been studied by scanning electron microscopy (SEM) and vertical optical microscope (VOM). With the increase of rotating speed from 1800 rpm to 2400 rpm, the mean fiber diameter decreased from 5.9 µm to 3.9 µm, indicating the distribution of glass wool becomes more uniformity. The results show that the rotating speed has a direct and pronounced effect on the fiber diameter and distribution. The higher the rotating speed is, the smaller the mean fiber diameter is, and the more uniformity the distribution of fiber diameter is.


e-Polymers ◽  
2014 ◽  
Vol 14 (5) ◽  
pp. 323-333 ◽  
Author(s):  
Soghra Ramazani ◽  
Mohammad Karimi

AbstractThe present work shows the effect of temperature on successfully obtained uniform electrospun poly-(ε-caprolactone) (PCL) fibers, with specific attention to the molecular orientation and diameter of nanofibers. Experiments were performed at temperatures (T) of 25°, 35°, and 45°C, and at PCL concentrations (w) of 12, 16, and 20 wt.%. Scanning electron microscopy provided the morphology of electrospun fibers and quantified their diameters. Elevated temperature for all PCL concentrations yielded a viscosity that allows for easier stretching of the jet to obtain a smaller diameter for fibers. A minimum size of the fiber diameter (close to 100 nm) was achieved for the set point T=45°C and w=12 and 16 wt.%. Due to the easy stretching of the jet by controlling the elastic property of the solution, a dichroic ratio of 1.62 was accessible for the set point T=35°C and w=12 wt.% from polarized Fourier transform infrared spectra as a factor for the orientation of PCL chains.


2011 ◽  
Vol 332-334 ◽  
pp. 1352-1356
Author(s):  
Li Wei Liu ◽  
Wei Min Kang ◽  
Bo Wen Cheng

In this paper polyurethane (PU) / polyaniline (PANI) nanofibers were successfully prepared via electrospinning with N, N-dimethylformamide (DMF) and tetrahydrofuran (THF) mixture (1:2 mass ratio). The morphology, diameter and structure of the electrospun nanofibers were examined by scanning electron microscopy (SEM) and the diameter distribution of nanofibers was measured by Image-Pro Plus. Results indicate that the morphology, diameter and uniformity of the fibers were influenced by solution concentration, applied voltage, capillary–screen distance and flow rate greatly, and the finer and uniform nanofibers were electrospun from total solid content of the spinning solutions at 8 wt. %, PU and PANI with ratio of 10/1 (w/w), the spinning voltage at 35 kV, the collecting distance at 15 cm and the extruding speed at 6 ml/h.


2017 ◽  
Vol 63 (2) ◽  
pp. 66-69 ◽  
Author(s):  
Noémi Pásztor ◽  
Emőke Rédai ◽  
Zoltán-István Szabó ◽  
Emese Sipos

Abstract Objective: The study aimed at obtaining and characterizing levofloxacin-loaded, poly(ε-caprolactone) electrospun nanofiber formulations to be used as antibacterial wound dressings. Methods: Drug-loaded nanofibers were obtained by the electrospinning process and their morphology was determined using scanning electron microscopy. Structural analysis of the prepared nanofibers was carried out using differential scanning calorimetry and dissolution testing was performed in order to determine drug release. Results: Both nanofiberous formulations (containing 20 % and 50 % w/w levofloxacin) showed dimensions in the range of few hundred nanometers. Thermograms indicated that the formulation containing 20% levofloxacin was totally amorphized, showing a rapid release of the active, in 20 minutes. Conclusions: The poly(ε-caprolactone)-based electrospun nanofibers, containing levofloxacin presented suitable characteristics for obtaining potential antibacterial wound dressings.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1536
Author(s):  
Ali Daraei ◽  
Marlien Pieters ◽  
Stephen R. Baker ◽  
Zelda de Lange-Loots ◽  
Aleksander Siniarski ◽  
...  

Scanning Electron Microscopy (SEM) is a powerful, high-resolution imaging technique widely used to analyze the structure of fibrin networks. Currently, structural features, such as fiber diameter, length, density, and porosity, are mostly analyzed manually, which is tedious and may introduce user bias. A reliable, automated structural image analysis method would mitigate these drawbacks. We evaluated the performance of DiameterJ (an ImageJ plug-in) for analyzing fibrin fiber diameter by comparing automated DiameterJ outputs with manual diameter measurements in four SEM data sets with different imaging parameters. We also investigated correlations between biophysical fibrin clot properties and diameter, and between clot permeability and DiameterJ-determined clot porosity. Several of the 24 DiameterJ algorithms returned diameter values that highly correlated with and closely matched the values of the manual measurements. However, optimal performance was dependent on the pixel size of the images—best results were obtained for images with a pixel size of 8–10 nm (13–16 pixels/fiber). Larger or smaller pixels resulted in an over- or underestimation of diameter values, respectively. The correlation between clot permeability and DiameterJ-determined clot porosity was modest, likely because it is difficult to establish the correct image depth of field in this analysis. In conclusion, several DiameterJ algorithms (M6, M5, T3) perform well for diameter determination from SEM images, given the appropriate imaging conditions (13–16 pixels/fiber). Determining fibrin clot porosity via DiameterJ is challenging.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1439
Author(s):  
Hua-Wei Chen ◽  
Min-Feng Lin

In this study, composite nanofibers (SF/PCL/CS) for the application of dressings were prepared with silk fibroin (SF), polycaprolactone (PCL), and chitosan (CS) by electrospinning techniques, and the effect of the fiber diameter was investigated using the three-stage Taguchi experimental design method (L9). Nanofibrous scaffolds were characterized by the combined techniques of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), a cytotoxicity test, proliferation tests, the antimicrobial activity, and the equilibrium water content. A signal-to-noise ratio (S/N) analysis indicated that the contribution followed the order of SF to PCL > flow rate > applied voltage > CS addition, possibly owing to the viscosity and formation of the beaded fiber. The optimum combination for obtaining the smallest fiber diameter (170 nm) with a smooth and uniform distribution was determined to be a ratio of SF to PCL of 1:2, a flow rate of 0.3 mL/hr, and an applied voltage of 25 kV at a needle tip-to-collector distance of 15 cm (position). The viability of these mouse fibroblast L929 cell cultures exceeded 50% within 24 hours, therefore SF/PCL/CS could be considered non-toxic according to the standards. The results proposed that the hydrophilic structure of SF/PCL/CS not only revealed a highly interconnected porous construction but also that it could help cells promote the exchange of nutrients and oxygen. The SF/PCL/CS scaffold showed a high interconnectivity between pores and porosity and water uptake abilities able to provide good conditions for cell infiltration and proliferation. The results from this study suggested that SF/PCL/CS could be suitable for skin tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document