A Complete Analytical Model of Surface Potential and Drain Current for an Ultra Short Channel Double Gate Asymmetric Junctionless Transistor

2019 ◽  
Vol 14 (9) ◽  
pp. 1283-1289 ◽  
Author(s):  
Nipanka Bora ◽  
Rupaban Subadar
2019 ◽  
Vol 9 (4) ◽  
pp. 504-511
Author(s):  
Sikha Mishra ◽  
Urmila Bhanja ◽  
Guru Prasad Mishra

Introduction: A new analytical model is designed for Workfunction Modulated Rectangular Recessed Channel-Silicon On Insulator (WMRRC-SOI) MOSFET that considers the concept of groove gate and implements an idea of workfunction engineering. Methods: The impact of Negative Junction Depth (NJD) and oxide thickness (tox) are analyzed on device performances such as Sub-threshold Slope (SS), Drain Induced Barrier Lowering (DIBL) and threshold voltage. Results: The results of the proposed work are evaluated with the Rectangular Recessed Channel-Silicon On Insulator (RRC-SOI) MOSFET keeping the metal workfunction constant throughout the gate region. Furthermore, an analytical model is developed using 2D Poisson’s equation and threshold voltage is estimated in terms of minimum surface potential. Conclusion: In this work, the impact of Negative Junction Depth (NJD) on minimum surface potential and the drain current are also evaluated. It is observed from the analysis that the analog switching performance of WMRRC-SOI MOSFET surpasses RRC-SOI MOSFET in terms of better driving capability, high Ion/Ioff ratio, minimized Short Channel Effects (SCEs) and hot carrier immunity. Results are simulated using 2D Sentaurus TCAD simulator for validation of the proposed structure.


2020 ◽  
Vol 65 ◽  
pp. 39-50
Author(s):  
N. Bora ◽  
N. Deka ◽  
R. Subadar

This paper presents an analytical model of various electrical parameters for an ultra thin symmetric double gate (SDG) junctionless field effect nanowire transistor (JLFENT). The model works for all the regions of operation of the nanowire transistor without using any fitting parameter. The surface potential is derived based on the solutions of Poisson’s and current continuity equations by using appropriate boundary conditions. The Pao–Sah double integral was used to obtain the drain current, transconductance and drain conductance. The results obtained from analytical model are validated by comparing with GENIUS 3D TCAD simulations. The simplicity of the model makes it appropriate to be a SPICE compatible model.


2019 ◽  
Vol 14 (12) ◽  
pp. 1672-1679 ◽  
Author(s):  
Ningombam Ajit Kumar ◽  
Aheibam Dinamani Singh ◽  
Nameirakpam Basanta Singh

A 2D surface potential analytical model of a channel with graded channel triple material double gate (GCTMDG) Silicon-on-Nothing (SON) MOSFET is proposed by intermixing the benefits of triple material in gate engineering and graded doping in the channel. The surface potential distribution function of the GCTMDG SON MOSFET is obtained by solving the Poisson's equation, applying suitable boundary conditions, and using a parabolic approximation method. It is seen in the proposed device that the Short Channel Effects (SCEs) are subdued due to the apprehensible step in the surface potential profile that screen the potential of the drain. The effects of the various device parameters are studied to check the merit of the device. For the validation of the proposed device, it is compared with the simulated results of ATLASTM, a device simulator from SILVACO.


Sign in / Sign up

Export Citation Format

Share Document