Investigation on nano-silica blended cementitious systems on the workability and durability performance of self-compacting concrete

2020 ◽  
Vol 10 (1) ◽  
pp. 10-20 ◽  
Author(s):  
K. Nandhini ◽  
V. Ponmalar

This paper manifests the performance of self-compacting concrete (SCC) together with the addition of nanosilica as supplementary cementitious material. For this study, nano-silica in different proportions of 1, 2 and 3% was used. The M40 grade of SCC with a total of four mixes inclusive of control concrete was prepared. The fresh state workability of SCC was assessed by conducting the slump flow, L-box test, V-funnel test, Orimet and J-ring tests. Hardened concrete test like tensile strength was also carried out. The durability tests on permeability properties like water absorption, porosity, sorptivity, rapid chloride penetration and sulfate resistance test were determined at the age of 7, 28, 90 and 180 days. The tensile strength showed 18.82% greater strength for 2% nano-silica compared to the control mix. The permeability tests exhibited a decrease from 378 coulombs to 99 coulombs and showed advancement in SCC with nano-silica. The scanning electron microscope study was conducted on SCC samples to determine the microstructural behavior of nano-silica. A dense matrix with better development of calcium silicate gel was observed for 2% nano-silica.

Author(s):  
Vasanth G ◽  
Dr. K. Ramadevi

This study presents experimentally the combined effect of using Nano-silica (NS) and steel fibers (SF) on the mechanical properties of hardened concrete. NS is used as partial cement replacement by different percentages, and SF is used as volume substitution by different percentages. Splitting tensile strength, modulus of elasticity, and flexural strength are evaluated using different combinations between NS and SF. Significant improvement in the mechanical properties of concrete is observed on using NS due to its high pozzolanic activity. The Optimum content of SF is improved splitting tensile strength with different percentages respectively compared to without either NS or SF. Utilizing NS with SF leads to improving modulus of elasticity compared to without either NS or SF. Flexural strength is doubled for using NS and SF compared to without NS and SF.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 264
Author(s):  
G J. Prasannaa Venkatesh ◽  
S S.Vivek ◽  
G Dhinakaran

Self-compacting concrete (SCC) is the flowable concrete which tends to fill the formwork under its weight without external compaction. In the present research, 9 different SCC mixes in binary blend along with control SCC and conventional vibrated concrete (CVC) mixes were developed. In binary combination, cement was partially replaced by SF from 7 to 21%, MK from 10 to 30% and GGBS from 20 to 60%. For the above 9 combinations of SCC mixes, the basic rheological properties test namely slump flow and T500 were carried out in the fresh state of SCC. The flowability was achieved using Superplasticizer and viscosity modifying admixture (VMA), added by the percentage of the weight of cement. In hardened state, the compressive strength of the cube specimens and the split tensile strength of the cylinder specimens were carried out.  


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Ashkan Rah Anjam ◽  
Hadi Faghihmaleki

Nowadays, the rapid growth of waste production and, especially, construction wastes has become one of the main problems in societies. In the world, reinforced concrete structures are destructed for different reasons. These destructions generate increasing values of waste. Furthermore, there are several stone factories in every region that produce a large volume of decorative construction stone wastes. This experimental study has investigated the effect of using recycled aggregates of construction and stone factory wastes in concrete production. Different tests were performed on concrete samples in fresh state (slump) and hardened concrete (compressive and tensile strength and modulus of elasticity). The optimal percentage for replacement of each of the recycled materials was determined based on comparing the results of laboratory tests. Finally, a proper mix design was proposed for both recycled aggregate samples, and a comprehensive report of the results was also provided.


2021 ◽  
Vol 11 (20) ◽  
pp. 9696
Author(s):  
Arash Karimipour ◽  
Mansour Ghalehnovi ◽  
Mahmoud Edalati ◽  
Jorge de Brito

This study intends to assess the influence of steel fibres (SF) and polypropylene fibres (PPF) on the hardened and fresh state properties of high-strength concrete (HSC). For this purpose, 99 concrete mixes were designed and applied. SF and PPF were used at six-volume replacement contents of 0%, 0.1%, 0.2%, 0.3%, 0.4% and 0.5%. Moreover, nano-silica (NS) was used at three contents, 0%, 1% and 2%, and silica fume powder (SP) was also used at three weight ratios (0%, 5% and 10%). The slump, compressive and tensile strength, elasticity modulus, water absorption and the electric resistivity of concrete specimens were examined. The results showed that using 1% NS and 10% SP together with 0.5% PPF improved the compressive strength of HSC by about 123%; however, the effect of SF on tensile strength is more significant and adding 0.5% SF with both 2% NS and 10% SP increased the tensile strength by 104%. Moreover, increasing the SF content reduces the electric resistivity while using PPF improves this property especially when 1% NS was employed, and it was enhanced by about 68% when 0.5% SF and 1% NS were utilized with 10% SP.


2021 ◽  
Vol 301 ◽  
pp. 124300
Author(s):  
Dimas Alan Strauss Rambo ◽  
Caroline Umbinger de Oliveira ◽  
Renan Pícolo Salvador ◽  
Romildo Dias Toledo Filho ◽  
Otávio da Fonseca Martins Gomes ◽  
...  

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
S. Y. Amakye ◽  
S. J. Abbey ◽  
A. O. Olubanwo

AbstractThe reuse of waste materials in civil engineering projects has become the topic for many researchers due to their economic and environmental benefits. In this study, brick dust waste (BDW) derived from cutting of masonry bricks and demolition waste which are normally dumped as land fill is used as partial replacement of cement in a concrete mix at 10%, 20% and 30% respectively, with the aim of achieving high strength in concrete using less cement due to the environmental problems associated with the cement production. To ascertain the effects of BDW on the consistency and mechanical performance of concrete mix, laboratory investigations on the workability of fresh concrete and the strength of hardened concrete were carried out. Slump and compaction index test were carried out on fresh concrete mix and unconfined compressive strength (UCS) test and tensile strength test were conducted on hardened concrete specimen after 7, 14 and 28 days of curing. The results showed high UCS and tensile strength with the addition of 10% BDW to the concrete mix, hence achieving the set target in accordance with the relevant British standards. A gradual reduction in strength was observed as BDW content increases, however, recording good workability as slump and compaction index results fell within the set target range in accordance with relevant British standards. Findings from this study concluded that BDW can partially replace cement in a concrete mix to up to 30% igniting the path to a cleaner production of novel concrete using BDW in construction work.


2019 ◽  
Vol 9 (1) ◽  
pp. 196-201
Author(s):  
Jacek Gołaszewski ◽  
Grzegorz Cygan ◽  
Tomasz Ponikiewski ◽  
Małgorzata Gołaszewska

AbstractThe main goal of the presented research was to verify the possibility of obtaining ecological self-compacting concrete of low hardening temperature, containing different types of cements with calcareous fly ash W as main component and the influence of these cements on basic properties of fresh and hardened concrete. Cements CEM II containing calcareous fly ash W make it possible to obtain self-compacting concrete (SCC) with similar initial flowability to analogous mixtures with reference cement CEM I and CEM III/B, and slightly higher, but still acceptable, flowability loss. Properties of hardened concretes with these cements are similar in comparison to CEM I and CEM III concretes. By using cement nonstandard, new generation multi-component cement CEM “X”/A (S-W), self-compacting concrete was obtained with good workability and properties in hardened state.


2021 ◽  
Vol 1808 (1) ◽  
pp. 012012
Author(s):  
Wisnu Ari Prasetyo ◽  
Ernawati Sri Sunarsih ◽  
Taufiq Lilo Adi Sucipto ◽  
Kundari Rahmawati

Sign in / Sign up

Export Citation Format

Share Document